中国物理B ›› 2020, Vol. 29 ›› Issue (7): 77803-077803.doi: 10.1088/1674-1056/ab9433
所属专题: SPECIAL TOPIC —Terahertz physics
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力)
收稿日期:
2020-03-27
修回日期:
2020-05-03
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
Zhen Tian, Weili Zhang
E-mail:weili.zhang@okstate.edu
基金资助:
Xieyu Chen(陈勰宇)1, Zhen Tian(田震)1, Quan Li(李泉)1, Shaoxian Li(李绍限)1, Xueqian Zhang(张学迁)1, Chunmei Ouyang(欧阳春梅)1, Jianqiang Gu(谷建强)1, Jiaguang Han(韩家广)1, Weili Zhang(张伟力)2
Received:
2020-03-27
Revised:
2020-05-03
Online:
2020-07-05
Published:
2020-07-05
Contact:
Zhen Tian, Weili Zhang
E-mail:weili.zhang@okstate.edu
Supported by:
摘要: Graphene has been recognized as a promising candidate in developing tunable terahertz (THz) functional devices due to its excellent optical and electronic properties, such as high carrier mobility and tunable conductivity. Here, we review graphene-based THz modulators we have recently developed. First, the optical properties of graphene are discussed. Then, graphene THz modulators realized by different methods, such as gate voltage, optical pump, and nonlinear response of graphene are presented. Finally, challenges and prospective of graphene THz modulators are also discussed.
中图分类号: (Optical properties of graphene)
陈勰宇, 田震, 李泉, 李绍限, 张学迁, 欧阳春梅, 谷建强, 韩家广, 张伟力. Recent progress in graphene terahertz modulators[J]. 中国物理B, 2020, 29(7): 77803-077803.
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Recent progress in graphene terahertz modulators[J]. Chin. Phys. B, 2020, 29(7): 77803-077803.
[1] |
Tonouchi M 2007 Nat. Photon. 1 97
doi: 10.1038/nphoton.2007.3 |
[2] |
Kleine-Ostmann T and Nagatsuma T 2011 J. Infrared Millimeter Terahertz Waves 32 143
doi: 10.1007/s10762-010-9758-1 |
[3] |
Mittleman D M 2018 Opt. Express 26 9417
doi: 10.1364/OE.26.009417 |
[4] |
Lim W X, Manjappa M, Srivastava Y K, Cong L, Kumar A, MacDonald K F and Singh R 2018 Adv. Mater. 30 1705331
doi: 10.1002/adma.201705331 |
[5] |
Wen T, Zhang C, Zhang X, Liao Y, Xiang Q, Wen Q, Zhang D, Li Y, Zhang H, Jing Y and Zhong Z 2018 Opt. Lett. 43 3021
doi: 10.1364/OL.43.003021 |
[6] | Chanana A, Liu X, Zhang C, Vardeny Z V and Nahata A 2018 Sci. Adv. 4 eaar7353 |
[7] |
Hu Y, Jiang T, Zhou J H, Hao H, Sun H, Ouyang H, Tong M Y, Tang Y X, Li H, You J, Zheng X, Xu Z J and Cheng X G 2020 Nano Energy 68 104280
doi: 10.1016/j.nanoen.2019.104280 |
[8] |
Savo S, Shrekenhamer D and Padilla W J 2014 Adv. Opt. Mater. 2 275
doi: 10.1002/adom.201300384 |
[9] |
rivastava Y K, Manjappa M, Cong L, Krishnamoorthy H N S, Savinov V, Pitchappa P and Singh R 2018 Adv. Mater. 30 1801257
doi: 10.1002/adma.201801257 |
[10] |
Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W and Yang Z Q 2018 ACS Photon. 5 3040
doi: 10.1021/acsphotonics.8b00276 |
[11] |
Cai H L, Chen S, Zou C W, Huang Q P, Liu Y, Hu X, Fu Z P, Zhao Y, He H C and Lu Y L 2018 Adv. Opt. Mater. 6 1800257
doi: 10.1002/adom.201800257 |
[12] |
Manjappa M, Pitchappa P, Singh N, Wang N, Zheludev N I, Lee C and Singh R 2018 Nat. Commun. 9 4056
doi: 10.1038/s41467-018-06360-5 |
[13] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
doi: 10.1038/nmat1849 |
[14] |
Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
doi: 10.1038/nphoton.2010.186 |
[15] |
Bao Q and Loh K P 2012 ACS Nano 6 3677
doi: 10.1021/nn300989g |
[16] |
Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X and Min B 2012 Nat. Mater. 11 936
doi: 10.1038/nmat3433 |
[17] |
Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L and Xing H G 2012 Nat. Commun. 3 780
doi: 10.1038/ncomms1787 |
[18] |
Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L and Xing H G 2012 Nano Lett. 12 4518
doi: 10.1021/nl3016329 |
[19] |
Valmorra F, Scalari G, Maissen C, Fu W, Schonenberger C, Choi J W, Park H G, Beck M and Faist J 2013 Nano Lett. 13 3193
doi: 10.1021/nl4012547 |
[20] |
Degl'Innocenti R, Jessop D S, Shah Y D, Sibik J, Zeitler J A, Kidambi P R, Hofmann S, Beere H E and Ritchie D A 2014 ACS Nano 8 2548
doi: 10.1021/nn406136c |
[21] |
Gao W, Shu J, Reichel K, Nickel D V, He X, Shi G, Vajtai R, Ajayan P M, Kono J, Mittleman D M and Xu Q 2014 Nano Lett. 14 1242
doi: 10.1021/nl4041274 |
[22] |
Mao Q, Wen Q Y, Tian W, Wen T L, Chen Z, Yang Q H and Zhang H W 2014 Opt. Lett. 39 5649
doi: 10.1364/OL.39.005649 |
[23] |
Liang G Z, Hu X N, Yu X C, Shen Y D, Li L H H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F and Wang Q J 2015 ACS Photon. 2 1559
doi: 10.1021/acsphotonics.5b00317 |
[24] |
Shi S F, Zeng B, Han H L, Hong X, Tsai H Z, Jung H S, Zettl A, Crommie M F and Wang F 2015 Nano Lett. 15 372
doi: 10.1021/nl503670d |
[25] |
Wu Y, La-o-vorakiat C, Qiu X, Liu J, Deorani P, Banerjee K, Son J, Chen Y, Chia E E and Yang H 2015 Adv. Mater. 27 1874
doi: 10.1002/adma.201405251 |
[26] |
Jessop D S, Kindness S J, Xiao L, Braeuninger-Weimer P, Lin H, Ren Y, Ren C X, Hofmann S, Zeitler J A, Beere H E, Ritchie D A and Degl'Innocenti R 2016 Appl. Phys. Lett. 108 171101
doi: 10.1063/1.4947596 |
[27] |
Kim T T, Kim H, Kenney M, Park H S, Kim H D, Min B and Zhang S 2018 Adv. Opt. Mater. 6 1700507
doi: 10.1002/adom.201700507 |
[28] |
Jung H, Koo J, Heo E, Cho B, In C, Lee W, Jo H, Cho J H, Choi H, Kang M S and Lee H 2018 Adv. Mater. 30 1802760
doi: 10.1002/adma.201802760 |
[29] |
Liu P Q, Luxmoore I J, Mikhailov S A, Savostianova N A, Valmorra F, Faist J and Nash G R 2015 Nat. Commun. 6 8969
doi: 10.1038/ncomms9969 |
[30] | Miao Z Q, Wu Q, Li X, He Q, Ding K, An Z H, Zhang Y B and Zhou L 2015 Phys. Rev. X 5 041027 |
[31] |
Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M and Zhang H W 2015 Sci. Rep. 4 7409
doi: 10.1038/srep07409 |
[32] |
Weis P, Garcia-Pomar J L, Hoh M, Reinhard B, Brodyanski A and Rahm M 2012 ACS Nano 6 9118
doi: 10.1021/nn303392s |
[33] |
Tang Y, Zhu Z, Zhang J, Guo C, Liu K, Yuan X and Qin S 2015 Chin. Phys. Lett. 32 025202
doi: 10.1088/0256-307X/32/2/025202 |
[34] |
Jiang R, Wu Z, Han Z and Jung H 2016 Chin. Phys. B 25 106803
doi: 10.1088/1674-1056/25/10/106803 |
[35] |
Du L, Li Q, Li S, Hu F, Xiong X, Li Y, Zhang W and Han J 2016 Chin. Phys. B 25 027301
doi: 10.1088/1674-1056/25/2/027301 |
[36] |
Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491
doi: 10.1038/nnano.2008.199 |
[37] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
doi: 10.1126/science.1102896 |
[38] |
Luo Z T, Pinto N J, Davila Y and Johnson A T C 2012 Appl. Phys. Lett. 100 253108
doi: 10.1063/1.4729828 |
[39] | Kim T T, Oh S S, Kim H D, Park H S, Hess O, Min B and Zhang S 2017 Sci. Adv. 3 e1701377 |
[40] |
Kindness S J, Almond N W, Wei B B, Wallis R, Michailow W, Kamboj V S, Braeuninger-Weimer P, Hofmann S, Beere H E, Ritchie D A and Degl'Innocenti R 2018 Adv. Opt. Mater. 6 1800570
doi: 10.1002/adom.201800570 |
[41] |
Kim T T, Kim H D, Zhao R, Oh S S, Ha T, Chung D S, Lee Y H, Min B and Zhang S 2018 ACS Photon. 5 1800
doi: 10.1021/acsphotonics.7b01551 |
[42] |
Liu W G, Hu B, Huang Z D, Guan H Y, Li H T, Wang X K, Zhang Y, Yin H X, Xiong X L, Liu J and Wang Y T 2018 Photon. Res. 6 703
doi: 10.1364/PRJ.6.000703 |
[43] |
Ahmadivand A, Gerislioglu B and Ramezani Z 2019 Nanoscale 11 8091
doi: 10.1039/C8NR10151E |
[44] |
Jung H, Jo H, Lee W, Kim B, Choi H, Kang M S and Lee H 2019 Adv. Opt. Mater. 7 1801205
doi: 10.1002/adom.201801205 |
[45] |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
doi: 10.1038/nnano.2011.146 |
[46] |
Daniels K M, Jadidi M M, Sushkov A B, Nath A, Boyd A K, Sridhara K, Drew H D, Murphy T E, Myers-Ward R L and Gaskill D K 2017 2D Mater. 4 025034
doi: 10.1088/2053-1583/aa5c75 |
[47] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
doi: 10.1103/RevModPhys.81.109 |
[48] |
Dawlaty J M, Shivaraman S, Strait J, George P, Chandrashekhar M, Rana F, Spencer M G, Veksler D and Chen Y Q 2008 Appl. Phys. Lett. 93 131905
doi: 10.1063/1.2990753 |
[49] |
Chen P Y and Alu A 2011 ACS Nano 5 5855
doi: 10.1021/nn201622e |
[50] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
doi: 10.1126/science.1156965 |
[51] |
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
doi: 10.1038/nature10067 |
[52] |
Polat E O and Kocabas C 2013 Nano Lett. 13 5851
doi: 10.1021/nl402616t |
[53] |
Li Q, Cong L, Singh R, Xu N, Cao W, Zhang X, Tian Z, Du L, Han J and Zhang W 2016 Nanoscale 8 17278
doi: 10.1039/C6NR01911K |
[54] |
Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N and Zheludev N I 2007 Phys. Rev. Lett. 99 147401
doi: 10.1103/PhysRevLett.99.147401 |
[55] |
Liu H T, Liu Y Q and Zhu D B 2011 J. Mater. Chem. 21 3335
doi: 10.1039/C0JM02922J |
[56] |
Kakenov N, Balci O, Takan T, Ozkan V A, Akan H and Kocabas C 2016 ACS Photon. 3 1531
doi: 10.1021/acsphotonics.6b00240 |
[57] |
Kakenov N, Ergoktas M S, Balci O and Kocabas C 2018 2D Mater. 5 035018
doi: 10.1088/2053-1583/aabfaa |
[58] | Chen X, Tian Z, Lu Y, Xu Y, Zhang X, Ouyang C, Gu J, Han J and Zhang W 2019 Adv. Opt. Mater. 8 1900660 |
[59] |
Chen X, Tian Z, Wang J, Yuan Y, Zhang X, Ouyang C, Gu J, Han J and Zhang W 2019 Carbon 155 514
doi: 10.1016/j.carbon.2019.09.007 |
[60] |
Kim J T, Choi H, Choi Y and Cho J H 2018 ACS Appl. Mater. Interfaces 10 1836
doi: 10.1021/acsami.7b16600 |
[61] |
Li Q, Tian Z, Zhang X Q, Xu N N, Singh R J, Gu J Q, Lv P, Luo L B, Zhang S, Han J G and Zhang W L 2015 Carbon 90 146
doi: 10.1016/j.carbon.2015.04.015 |
[62] |
Li Q, Tian Z, Zhang X, Singh R, Du L, Gu J, Han J and Zhang W 2015 Nat. Commun. 6 7082
doi: 10.1038/ncomms8082 |
[63] |
Qi J, Zhang H, Ji D, Fan X, Cheng L, Liang H, Li H, Zeng C and Zhang Z 2014 Adv. Mater. 26 3735
doi: 10.1002/adma.201400062 |
[64] |
Gorecki J, Apostolopoulos V, Ou J Y, Mailis S and Papasimakis N 2018 ACS Nano 12 5940
doi: 10.1021/acsnano.8b02161 |
[65] |
Hwang H Y, Brandt N C, Farhat H, Hsu A L, Kong J and Nelson K A 2013 J. Phys. Chem. B 117 15819
doi: 10.1021/jp407548a |
[66] |
Hafez H A, Lévesque P L, Al-Naib I, Dignam M M, Chai X, Choubak S, Desjardins P, Martel R and Ozaki T 2015 Appl. Phys. Lett. 107 251903
doi: 10.1063/1.4938081 |
[67] |
Li S, Nugraha P S, Su X, Chen X, Yang Q, Unferdorben M, Kovacs F, Kunsagi-Mate S, Liu M, Zhang X, Ouyang C, Li Y, Fulop J A, Han J and Zhang W 2019 Opt. Express 27 2317
doi: 10.1364/OE.27.002317 |
[68] |
Kakenov N, Takan T, Ozkan V A, Balci O, Polat E O, Altan H and Kocabas C 2015 Opt. Lett. 40 1984
doi: 10.1364/OL.40.001984 |
[69] |
Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R and Padilla W J 2014 Nat. Photon. 8 605
doi: 10.1038/nphoton.2014.139 |
[1] | Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Polarization Raman spectra of graphene nanoribbons[J]. 中国物理B, 2023, 32(4): 46803-046803. |
[2] | Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma[J]. 中国物理B, 2023, 32(3): 35201-035201. |
[3] | Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light[J]. 中国物理B, 2023, 32(3): 37301-037301. |
[4] | Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit[J]. 中国物理B, 2023, 32(3): 38702-038702. |
[5] | Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth[J]. 中国物理B, 2023, 32(2): 27801-027801. |
[6] | Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). High efficiency of broadband transmissive metasurface terahertz polarization converter[J]. 中国物理B, 2023, 32(2): 24201-024201. |
[7] | Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure[J]. 中国物理B, 2023, 32(1): 17305-017305. |
[8] | Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure[J]. 中国物理B, 2023, 32(1): 17202-017202. |
[9] | Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions[J]. 中国物理B, 2023, 32(1): 18701-018701. |
[10] | Jiu-Sheng Li(李九生)† and Zhe-Wen Li(黎哲文). Dual-function terahertz metasurface based on vanadium dioxide and graphene[J]. 中国物理B, 2022, 31(9): 94201-094201. |
[11] | Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states[J]. 中国物理B, 2022, 31(8): 87804-087804. |
[12] | Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Recent advances of defect-induced spin and valley polarized states in graphene[J]. 中国物理B, 2022, 31(8): 87301-087301. |
[13] | Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system[J]. 中国物理B, 2022, 31(8): 84210-084210. |
[14] | Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation[J]. 中国物理B, 2022, 31(8): 87302-087302. |
[15] | Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light[J]. 中国物理B, 2022, 31(8): 88102-088102. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 225
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 652
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|