中国物理B ›› 2017, Vol. 26 ›› Issue (3): 34401-034401.doi: 10.1088/1674-1056/26/3/034401
所属专题: TOPICAL REVIEW — 2D materials: physics and device applications
• TOPICAL REVIEW—2D materials: physics and device applications • 上一篇 下一篇
Gang Zhang(张刚), Yong-Wei Zhang(张永伟)
收稿日期:
2016-09-15
修回日期:
2016-11-17
出版日期:
2017-03-05
发布日期:
2017-03-05
通讯作者:
Gang Zhang
E-mail:zhangg@ihpc.a-star.edu.sg
基金资助:
Project supported by the Science and Engineering Research Council, Singapore (Grant No. 152-70-00017) and the Agency for Science, Technology and Research (A*STAR), Singapore.
Gang Zhang(张刚), Yong-Wei Zhang(张永伟)
Received:
2016-09-15
Revised:
2016-11-17
Online:
2017-03-05
Published:
2017-03-05
Contact:
Gang Zhang
E-mail:zhangg@ihpc.a-star.edu.sg
Supported by:
Project supported by the Science and Engineering Research Council, Singapore (Grant No. 152-70-00017) and the Agency for Science, Technology and Research (A*STAR), Singapore.
摘要:
Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS2 and WS2), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS2 and the new strategy for thermal management of MoS2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator.
中图分类号: (Heat conduction)
张刚, 张永伟. Thermal properties of two-dimensional materials[J]. 中国物理B, 2017, 26(3): 34401-034401.
Gang Zhang(张刚), Yong-Wei Zhang(张永伟). Thermal properties of two-dimensional materials[J]. Chin. Phys. B, 2017, 26(3): 34401-034401.
[1] | Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotech. 9 768 |
[2] | Qiu H, Pan L, Yao Z, Li J, Shi Y and Wang X 2012 Appl. Phys. Lett. 100 123104 |
[3] | Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J and Wang X 2013 Nat. Commun. 4 2642 |
[4] | Yu Z, Pan Y, Shen Y, Wang Z, Ong Z Y, Xu T, Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang Y W, Shi Y and Wang X 2014 Nat. Commun. 5 5290 |
[5] | Liu Y, Wu H, Cheng H C, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N, Huang Y and Duan X 2015 Nano Lett. 15 3030 |
[6] | Yu Z, Ong Z Y, Pan Y, Cui Y, Xin R, Shi Y, Wang B, Zhang Y W, Zhang G and Wang X 2016 Adv. Mater. 28 547 |
[7] | Moore G E 1998 P. IEEE 86 82 |
[8] | Lan Y, Minnich A J, Chen G and Ren Z 2010 Adv. Funct. Mater. 20 357 |
[9] | Zhang G and Zhang Y W 2013 Phys. Stat. Sol. RRL 7 754 |
[10] | Balandin A A 2011 Nat. Mater. 10 569 |
[11] | Sadeghi M M, Pettes M T and Shi L 2012 Solid State Commum. 152 1321 |
[12] | Zhang G and Li B 2010 Nanoscale 2 1058 |
[13] | Zhang G and Manjooran N 2014 Nanofabrication and Its Application in Renewable Energy (Cambridge: Royal Society of Chemistry) pp. 101-119 |
[14] | Yang N, Xu X, Zhang G and Li B 2012 AIP Adv. 2 041410 |
[15] | Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131 |
[16] | Liu S, Xu X, Xie R, Zhang G and Li B 2012 Eur. Phys. J. B 85 337 |
[17] | Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902 |
[18] | Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L and Ruoff R S 2010 Nano Lett. 10 1645 |
[19] | Marconnet A M, Panzer M A and Goodson K E 2013 Rev. Mod. Phys. 85 1295 |
[20] | Guo Z, Zhang D and Gong X G 2009 Appl. Phys. Lett. 95 163103 |
[21] | Xu Y, Chen X, Gu B L and Duan W 2009 Appl. Phys. Lett. 95 233116 |
[22] | Nika D L, Askerov A S and Balandin A A 2012 Nano Lett. 12 3238 |
[23] | Yu C and Zhang G 2013 J. Appl. Phys. 113 044306 |
[24] | Shen Y, Xie G, Wei X, Zhang K, Tang M, Zhong J, Zhang G and Zhang Y W 2014 J. Appl. Phys. 115 063507 |
[25] | Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B and Thong J T L 2011 Nano Lett. 11 113 |
[26] | Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F and Lau C N 2008 Appl. Phys. Lett. 92 151911 |
[27] | Xu X, Pereira L F C, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui C T, Xie R, Thong J T L, Hong B H, Loh K P, Donadio D, Li B and Özyilmaz B 2014 Nat. Commun. 5 3689 |
[28] | Guo Z X, Zhang D and Gong X G 2011 Phys. Rev. B 84 075470 |
[29] | Ong Z Y and Pop E 2011 Phys. Rev. B 84 075471 |
[30] | Chen J, Zhang G and Li B 2013 Nanoscale 5 532 |
[31] | Yu C and Zhang G 2013 J. Appl. Phys. 113 214304 |
[32] | Peng X F, Wang X J, Chen L Q and Chen K Q 2012 Europhys. Lett. 98 56001 |
[33] | Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213 |
[34] | Li X, Chen J, Yu C and Zhang G 2013 Appl. Phys. Lett. 103 013111 |
[35] | Pei Q X, Sha Z D and Zhang Y W 2011 Carbon 49 4752 |
[36] | Huang W, Pei Q X, Liu Z and Zhang Y W 2012 Chem. Phys. Lett. 552 97 |
[37] | Liu X, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 12541 |
[38] | Wang Y, Zhan H, Xiang Y, Yang C, Wang C and Zhang Y 2015 J. Phys. Chem. C 119 12731 |
[39] | Wang Y, Yang C, Cheng Y and Zhang Y 2015 RSC Adv. 5 82638. |
[40] | Cheng Y, Koh L, Li D, Ji B, Zhang Y, Yeo J, Guan G, Han M and Zhang Y 2015 ACS Appl. Mater. Inter. 7 21787 |
[41] | Zhang Y, Pei Q, Wang C, Cheng Y and Zhang Y 2013 J. Appl. Phys. 114 073504 |
[42] | Wei N, Xu L Q, Wang H Q and Zheng J C 2011 Nanotechnology 22 105705 |
[43] | Li X, Maute K, Dunn M and Yang R 2010 Phys. Rev. B 81 245318 |
[44] | Zhan H, Zhang Y, Bell J, Mai Y and Gu Y 2014 Carbon 77 416 |
[45] | Zhan H, Zhang G, Bell J and Gu Y 2014 Appl. Phys. Lett. 105 153105 |
[46] | Xie G, Shen Y, Wei X, Yang L, Xiao H, Zhong J and Zhang G 2014 Sci. Rep. 4 5085 |
[47] | Zhan H, Zhang Y, Bell J and Gu Y 2015 J. Phys. Chem. C 119 1748 |
[48] | Zhang Y, Cheng Y, Pei Q, Wang C and Xiang Y 2012 Phys. Lett. A 376 3668 |
[49] | Lan J, Cai Y, Zhang G, Wang J S and Zhang Y W 2014 J. Phys. D-Appl. Phys. 47 265303 |
[50] | Xie Z X, Chen K Q and Duan W H 2011 J. Phys.-Condens. Matter 23 315302 |
[51] | Peng X F, Wang X J, Gong Z Q and Chen K Q 2011 Appl. Phys. Lett. 99 233105 |
[52] | Balandin A and Wang K L 1998 Phys. Rev. B 58 1544 |
[53] | Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 104508 |
[54] | Chen J, Zhang G and Li B 2012 Nano Lett. 12 2826 |
[55] | Li X and Zhang G 2013 Front. Phys. 1 19 |
[56] | Liu X, Zhang G, Pei Q X and Zhang Y W 2013 Appl. Phys. Lett. 103 133113 |
[57] | Zhang G and Li B 2005 J. Chem. Phys. 123 114714 |
[58] | Zhang G and Li B 2005 J. Chem. Phys. 123 014705 |
[59] | Cai Y, Lan J, Zhang G and Zhang Y W 2014 Phys. Rev. B 89 035438 |
[60] | Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F and Katiyar R S 2013 J. Phys. Chem. C 117 9042 |
[61] | Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Hight Walker A R and Xing H G 2014 ACS Nano 8 986 |
[62] | Fan D D, Liu H J, Cheng L, Jiang P H, Shi J and Tang X F 2014 Appl. Phys. Lett. 105 133113 |
[63] | Li W, Carrete J and Mingo N 2013 Appl. Phys. Lett. 103 253103 |
[64] | Jiang J W, Park H S and Rabczuk T 2013 J. Appl. Phys. 114 064307 |
[65] | Wu X F, Yang N and Luo T F 2015 Appl. Phys. Lett. 107 191907 |
[66] | Wei X, Wang Y, Shen Y, Xie G, Xiao H, Zhong J and Zhang G 2014 Appl. Phys. Lett. 105 103902 |
[67] | Li W, Zhang G, Guo M and Zhang Y W 2014 Nano Res. 7 518 |
[68] | Zhang G, Zhang Q X, Bui C T, Lo G Q and Li B 2009 Appl. Phys. Lett. 94 213108 |
[69] | Liu X, Zhang G and Zhang Y W 2016 Nano Res. 9 2372 |
[70] | Li W, Guo M, Zhang G and Zhang Y W 2014 Chem. Mater. 26 5625 |
[71] | Wang Y, Ruan X L and Roy A K 2012 Phys. Rev. B 85 205311 |
[72] | Ding Z W, Pei Q X, Jiang J W and Zhang Y W 2015 J. Phys. Chem. C 119 16358 |
[73] | Yu Z, Sergeant N, Skauli T, Zhang G, Wang H and Fan S 2013 Nat. Commun. 4 1730 |
[74] | Peng J, Zhang G and Li B 2015 Appl. Phys. Lett. 107 133108 |
[75] | Ilic O, Jablan M, Joannopoulos J D, Celanovic I, Buljan H and Soljačić M 2012 Phys. Rev. B 85 155422 |
[76] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotech. 9 372 |
[77] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 |
[78] | Dai J and Zeng X C 2014 J. Phys. Chem. Lett. 5 1289 |
[79] | Cai Y, Zhang G and Zhang Y W 2014 Sci. Rep. 4 6677 |
[80] | Li W, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 22368 |
[81] | Guo H, Lu N, Dai J, Wu X and Zeng X C 2014 J. Phys. Chem. C 118 14051 |
[82] | Du Y, Liu H, Xu B, Sheng L, Yin J, Duan C G and Wan X 2015 Sci. Rep. 5 8921 |
[83] | Ong Z Y, Zhang G and Zhang Y W 2014 J. Appl. Phys. 116 214505 |
[84] | Ma X, Lu W, Chen B, Zhong D, Huang L, Dong L, Jin C and Zhang Z 2015 AIP Adv. 5 107112 |
[85] | Li W, Yang Y, Zhang G and Zhang Y W 2015 Nano Lett. 15 1691 |
[86] | Nie A, Cheng Y, Ning S, Foroozan T, Yasaei P, Li W, Song B, Yuan Y, Chen L, Salehi-Khojin A, Mashayek F and Shahbazian-Yassar R 2016 Nano Lett. 16 2240 |
[87] | Ong Z Y, Cai Y, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 25272 |
[88] | Xu W, Zhu L, Cai Y, Zhang G and Li B 2015 J. Appl. Phys. 117 214308 |
[89] | Zhang Y, Pei Q, Jiang J, Wei N and Zhang Y 2016 Nanoscale 8 483 |
[90] | Hong Y, Zhang J C, Huang X and Zeng X C 2015 Nanoscale 7 18716 |
[91] | Zhu L, Zhang G and Li B 2014 Phys. Rev. B 90 214302 |
[92] | Jain A and McGaughey A J H 2015 Sci. Rep. 5 8501 |
[93] | Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R and Su G 2014 Sci. Rep. 4 6946 |
[94] | Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F and Zhang Q J 2014 Sci. Rep. 4 6452 |
[95] | Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C and Yang L 2014 Nano Lett. 14 6393 |
[96] | Liao B, Zhou J, Qiu B, Dresselhaus M S and Chen G 2015 Phys. Rev. B 91 235419 |
[97] | Zhou H, Cai Y, Zhang G and Zhang Y W 2016 J. Mater. Res. 31 3179 |
[98] | Yang L, Yang N and Li B 2014 Nano Lett. 14 1734 |
[99] | Xu W and Zhang G 2016 J. Phys.-Condens. Matter 28 175401 |
[100] | Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045 |
[101] | Hu J, Ruan X and Chen Y P 2009 Nano Lett. 9 2730 |
[102] | Yang N, Zhang G and Li B 2009 Appl. Phys. Lett. 95 033107 |
[103] | Zhang G and Zhang H 2011 Nanoscale 3 4604 |
[104] | Wang Y, Chen S and Ruan X 2012 Appl. Phys. Lett. 100 163101 |
[105] | Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G and Liu L T 2012 Sci. Rep. 2 523 |
[106] | Chen R, Cui Y, Tian H, Yao R, Liu Z, Shu Y, Li C, Yang Y, Ren T, Zhang G and Zou R 2015 Sci. Rep. 5 8884 |
[107] | Liu X, Zhang G and Zhang Y W 2015 Nano Res. 8 2755 |
[108] | Xu Y, Li Z and Duan W H 2014 Small 10 2182 |
[109] | Pop E, Varshney V and Roy A K 2012 MRS Bull. 37 1273 |
[110] | Chen X and Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) |
[111] | Zhang G and Huang S Y 2013 Physics 42 100 (in Chinese) |
[112] | Xu X, Chen J and Li B 2016 J. Phys.-Condens. Matter 28 483001 |
[113] | Gu X and Yang R 2015 arXiv:1509.07762 [cond-mat.mtrl-sci] |
[114] | Jang H, Wood J, Ryder C, Hersam M and Cahill D 2015 Adv. Mater. 27 8017) |
[115] | Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D and Xu X 2015 Nat. Commun. 6 8572 |
[116] | Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Choe H S, Suslu A, Chen Y, Ko C, Park J, Liu K, Li J, Hippalgaonkar K, Urban J J, Tongay S and Wu J 2015 Nat. Commun. 6 8573 |
[117] | Ouhe R G, Wang Y Y and Lu J 2015 Chin. Phys. B 24 088105 |
[118] | Gao J and Zhao J 2012 Sci. Rep. 2 861 |
[119] | Gu X and Yang R 2015 J. Appl. Phys. 117 025102 |
[120] | Gao J, Zhang G and Zhang Y W 2016 Sci. Rep. 6 29107 |
[121] | Zhou H, Cai Y, Zhang G and Zhang Y W 2016 Phys. Rev. B 94 045423 |
[122] | Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804 |
[123] | Tand D W, Wang Z L and Yuan K P 2015 Chin. Phys. Lett. 32 104401 |
[124] | Ding X and Ming Y 2014 Chin. Phys. Lett. 31 046601 |
[125] | Sun L K, Yu Z F and Huang J 2015 Acta Phys. Sin. 64 224401 (in Chinese) |
[126] | Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Ajayan P M and Tour J M 2014 Nano Res. 7 1232 |
[127] | Tian Z, Esfarjani K and Chen G 2012 Phys. Rev. B 86 235304 |
[128] | Xu W, Zhang G and Li B 2014 J. Appl. Phys. 116 134303 |
[129] | Ong Z Y and Zhang G 2015 Phys. Rev. B 91 174302 |
[130] | Zhou Y, Zhang X and Hu M 2016 Nanoscale 8 1994 |
[131] | Ong Z Y, Zhang G and Zhang Y W 2016 Phys. Rev. B 93 075406 |
[132] | Zhan H, Zhang G, Zhang Y, Tan V B C, Bell J M and Gu Y 2016 Carbon 98 232 |
[133] | Zhu T and Ertekin E 2014 Phys. Rev. B 90 195209 |
[134] | Chen J, Walther J H and Koumoutsakos P 2015 Adv. Funct. Mater. 25 7539 |
[135] | Liu X, Zhang G and Zhang Y W 2016 Nano Lett. 16 4954 |
[1] | Mao Liu(刘帽)†, Quan Yan(严泉). Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device[J]. 中国物理B, 2023, 32(4): 44402-044402. |
[2] | Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride[J]. 中国物理B, 2023, 32(3): 37104-037104. |
[3] | Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons[J]. 中国物理B, 2022, 31(7): 77304-077304. |
[4] | Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures[J]. 中国物理B, 2022, 31(11): 117303-117303. |
[5] | Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Epitaxy of III-nitrides on two-dimensional materials and its applications[J]. 中国物理B, 2022, 31(11): 117702-117702. |
[6] | Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Effect of electrical contact on performance of WSe2 field effect transistors[J]. 中国物理B, 2021, 30(6): 68501-068501. |
[7] | Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations[J]. 中国物理B, 2021, 30(5): 56801-056801. |
[8] | Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure[J]. 中国物理B, 2021, 30(5): 57801-057801. |
[9] | Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). A double quantum dot defined by top gates in a single crystalline InSb nanosheet[J]. 中国物理B, 2021, 30(12): 128501-128501. |
[10] | Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Two-dimensional topological semimetals[J]. 中国物理B, 2021, 30(10): 107304-107304. |
[11] | 严长林, 王聪, 周霖蔚, 郭朋杰, 刘凯, 卢仲毅, 程志海, 柴扬, 潘安练, 季威. Two ultra-stable novel allotropes of tellurium few-layers[J]. 中国物理B, 2020, 29(9): 97103-097103. |
[12] | 侯延辉, 张腾, 孙家涛, 刘立巍, 姚裕贵, 王业亮. Progress on 2D topological insulators and potential applications in electronic devices[J]. 中国物理B, 2020, 29(9): 97304-097304. |
[13] | 刘宏波. Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure[J]. 中国物理B, 2020, 29(8): 87701-087701. |
[14] | 洪浩, 程阳, 吴春春, 黄琛, 刘灿, 于文韬, 周旭, 马超杰, 王金焕, 张智宏, 赵芸, 熊杰, 刘开辉. Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain[J]. 中国物理B, 2020, 29(7): 77201-077201. |
[15] | 徐龙翔, 吕文刚, 胡晨, 郭奇勋, 尚帅, 徐秀兰, 于广华, 岩雨, 王立华, 滕蛟. Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure[J]. 中国物理B, 2020, 29(7): 77304-077304. |
|