中国物理B ›› 2011, Vol. 20 ›› Issue (12): 120503-120503.doi: 10.1088/1674-1056/20/12/120503
Mahdi Pourgholi, Vahid Johari Majd
收稿日期:
2011-02-26
修回日期:
2011-06-30
出版日期:
2011-12-15
发布日期:
2011-12-15
Mahdi Pourgholi† and Vahid Johari Majd
Received:
2011-02-26
Revised:
2011-06-30
Online:
2011-12-15
Published:
2011-12-15
摘要: In this paper, chaos synchronization in the presence of parameter uncertainty, observer gain perturbation and exogenous input disturbance is considered. A nonlinear non-fragile proportional-integral (PI) adaptive observer is designed for the synchronization of chaotic systems; its stability conditions based on the Lyapunov technique are derived. The observer proportional and integral gains, by converting the conditions into linear matrix inequality (LMI), are optimally selected from solutions that satisfy the observer stability conditions such that the effect of disturbance on the synchronization error becomes minimized. To show the effectiveness of the proposed method, simulation results for the synchronization of a Lorenz chaotic system with unknown parameters in the presence of an exogenous input disturbance and abrupt gain perturbation are reported.
中图分类号: (Nonlinear dynamics and chaos)
Mahdi Pourgholi, Vahid Johari Majd. A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization[J]. 中国物理B, 2011, 20(12): 120503-120503.
Mahdi Pourgholi and Vahid Johari Majd . A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization[J]. Chin. Phys. B, 2011, 20(12): 120503-120503.
[1] | Zhu Z and Leung H 2000 emphIEEE Trans. Circ. Sys. I: emphFund. Theor. Appl. 47 1072 |
[2] | Ayati M and Khaloozadeh H 2009 emphChaos, Solitions and Fractals 42 2473 |
[3] | Santoboni G, Yu A and Nijmeijer H 2001 emphPhys. Lett. A 291 265 |
[4] | Hu J, Chen S and Chen L 2005 emphPhys. Lett. A 339 455 |
[5] | Bastin G and Gevers M R 1988 emphIEEE Trans. Autom. Control 33 650 |
[6] | Marino R 1990 emphIEEE Trans. Autom. Control 35 1054 |
[7] | Marino R and Tomei P 1992 emphIEEE Trans. Autom. Control 37 1239 |
[8] | Marino R and Tomei P 1995 emphIEEE Trans. Autom. Control 40 1300 |
[9] | Rajamani R and Hedrick J K 1995 emphIEEE Trans. Control Sys. Technol. 3 86 |
[10] | Zhang J, Xu H B and Wang H J 2006 emphChin. Phys. 15 953 |
[11] | Li S, Xu W and Li R 2007 emphPhys. Lett. A 361 98 |
[12] | Hu J and Zhang Q J 2008 emphChin. Phys. B 17 503 |
[13] | Marino R, Santosuosso G L and Tomei P 2001 emphIEEE Trans. Autom. Control 46 967 |
[14] | Jung J, Hul K, Fathy H K and Srein J L 2006 emphAmerican Control Conf. p. 3637 |
[15] | Jung J, Hwang J and Huh K 2007 emphProc. ACC. p. 1931 |
[16] | Jeong C S, Yaz E E, Bahakeem A and Yaz Y I 2006 emphProc. ACC. p. 111 |
[17] | Keel L H and Bhattacharyya S P 1997 emphIEEE Trans. Autom. Control 42 1098 |
[18] | Jeong C S, Yaz E E and Yaz Y I 2008 emphIEEE Multi-conference on Systems and Control p. 942 |
[19] | Jeong C S, Yaz E E and Yaz Y I 2007 emphIEEE Conf. CDC p. 1227 |
[20] | Pourgholi M and Majd V J 2009 emphIEEE Multi-conference on Systems and Control p. 643 |
[21] | Pourgholi M and Majd V J 2011 emphSpringer-Circuits Sys. Signal Process. DOI 10.1007/s00034-011-9320-y |
[22] | Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 emphLinear Matrix Inequalities in System and Control Theory (Philadelphia: Society for Industrial and Applied Mathematics) |
[23] | Chen F and Zhang W 2007 emphNonlinear Analysis 67 3384 |
[24] | Krstic M, Kanellakopoulos I and Kokotovic P 1995 emphNonlinear and Adaptive Control Design (New York: John Wiley and Sons) |
[25] | Lofberg J 2004 emphIEEE Int. Symp. Comput. Aided Contol Syst. Design Conf. p. 284 |
[26] | Gahinet P, Nemirovski A, Laub A and Chilai M 1995 emphLMI Control Toolbox User's Guide (Massachusetts: The Mathworks) |
[1] | Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity[J]. 中国物理B, 2023, 32(3): 30203-030203. |
[2] | Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). A color image encryption algorithm based on hyperchaotic map and DNA mutation[J]. 中国物理B, 2023, 32(3): 30501-030501. |
[3] | Huamei Yang(杨华美) and Yuangen Yao(姚元根). Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system[J]. 中国物理B, 2023, 32(2): 20501-020501. |
[4] | Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication[J]. 中国物理B, 2023, 32(2): 20502-020502. |
[5] | Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability[J]. 中国物理B, 2023, 32(1): 10507-010507. |
[6] | Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Resonance and antiresonance characteristics in linearly delayed Maryland model[J]. 中国物理B, 2022, 31(12): 120502-120502. |
[7] | Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). A novel hyperchaotic map with sine chaotification and discrete memristor[J]. 中国物理B, 2022, 31(12): 120501-120501. |
[8] | Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control[J]. 中国物理B, 2022, 31(10): 100504-100504. |
[9] | Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers[J]. 中国物理B, 2022, 31(10): 100505-100505. |
[10] | Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Exponential sine chaotification model for enhancing chaos and its hardware implementation[J]. 中国物理B, 2022, 31(8): 80508-080508. |
[11] | Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises[J]. 中国物理B, 2022, 31(8): 80502-080502. |
[12] | Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map[J]. 中国物理B, 2022, 31(8): 80504-080504. |
[13] | Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system[J]. 中国物理B, 2022, 31(8): 80507-080507. |
[14] | Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Research and application of stochastic resonance in quad-stable potential system[J]. 中国物理B, 2022, 31(7): 70503-070503. |
[15] | Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system[J]. 中国物理B, 2022, 31(7): 70505-070505. |
|