中国物理B ›› 2010, Vol. 19 ›› Issue (5): 50306-050306.doi: 10.1088/1674-1056/19/5/050306
杨宇光1, 曹卫锋2, 温巧燕3
收稿日期:
2009-07-14
修回日期:
2009-11-04
出版日期:
2010-05-15
发布日期:
2010-05-15
基金资助:
Yang Yu-Guang(杨宇光)a)†, Cao Wei-Feng(曹卫锋)c), and Wen Qiao-Yan(温巧燕)b)
Received:
2009-07-14
Revised:
2009-11-04
Online:
2010-05-15
Published:
2010-05-15
Supported by:
摘要: Based on $\chi $-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 {\it Phys. Rev.} A {\bf68} 042317], a quantum secret sharing protocol of secure direct communication based on $\chi$-type entangled states $\vert \chi ^{00}\rangle _{3214} $ is proposed. Using some interesting entanglement properties of this state, the agent entirety can directly obtain the secret message from the message sender only if they collaborate together. The security of the scheme is also discussed.
中图分类号: (Quantum communication)
杨宇光, 曹卫锋, 温巧燕. Three-party quantum secret sharing of secure direct communication based on χ-type entangled states[J]. 中国物理B, 2010, 19(5): 50306-050306.
Yang Yu-Guang(杨宇光), Cao Wei-Feng(曹卫锋), and Wen Qiao-Yan(温巧燕). Three-party quantum secret sharing of secure direct communication based on $\chi$-type entangled states[J]. Chin. Phys. B, 2010, 19(5): 50306-050306.
[1] | Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Computers, Systems, and Signal Processing (India: Bangalore) p175 |
[2] | Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 Acta Phys. Pol. A 101 357 |
[3] | Bostr\"{oem K and Felbinger T 2002 Phys. Rev. Lett. 89 187902 |
[4] | Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317 |
[5] | Zhang Z J, Man Z X and Li Y 2004 Phys. Lett. A 333 46 |
[6] | Deng F G and Long G L 2004 Phys. Rev. A 69 052319 |
[7] | Nguyen B A 2004 Phys. Lett. A 328 6 |
[8] | Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18 |
[9] | Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501 |
[10] | D eng F G and Long G L 2006 Commun. Theor. Phys. 46 443 |
[11] | Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256 |
[12] | Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 22 |
[13] | Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338 |
[14] | Xia Y, Fu C B, Zhang S, Hong S K, Yeon K H and Um C I 2006 J. Korean Phys. Soc. 48 24 |
[15] | Chen P, Deng F G and Long G L 2006 Chin. Phys. 15 2228 |
[16] | Chen P, Li Y S, Deng F G and Long G L 2007 Commun.Theor. Phys. 47 49 |
[17] | Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305 |
[18] | Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302 |
[19] | Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359 |
[20] | Deng F G, Long G L and Zhou H Y 2005 Phys. Lett. A 340 43 |
[21] | Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 354 190 |
[22] | Yang Y G and Wen Q Y 2007 Sci. Chin. G: Phys. Mech. Astron. 50 558 |
[23] | Yang Y G, Wen Q Y and Zhu F C 2007 Chin. Phys. 16 1838 |
[24] | Zhang Z J, Liu J, Wang D and Shi S 2007 Phys. Rev. A 75 026301 |
[25] | Zhang Z J 2005 Phys. Lett. A 342 60 |
[26] | Zhang Z J, Li Y and Man Z X 2005 Phys. Lett. A 341 385 |
[27] | Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829 |
[28] | Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162 |
[29] | Zhang Z J 2005 Phys. Lett. A 342 60 |
[30] | Zhang Z J and Man Z X 2005 Phys. Rev. A 72 022303 |
[31] | Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301 |
[32] | Wang J, Zhang Q and Tang C J 2007 Commun. Theor. Phys. 47 454 |
[33] | Han L F, Liu Y M, Liu J and Zhang Z J 2008 Opt. Commun. 281 2690 |
[34] | Qin S J, Gao F, Wen Q Y and Zhu F C 2008 Opt. Commun. 281 5472 |
[35] | Wang T Y, Wen Q Y, Chen X B, Guo F Z and Zhu F C 2008 Opt. Commun. 281 6130 |
[36] | Li B K, Yang Y G and Wen Q Y 2009 Chin. Phys. Lett. 26 010302 |
[37] | Yang Y G and Wen Q Y 2008 Sci. Chin. G: Phys. Mech. Astron. 51 1308 |
[38] | Yang Y G and Wen Q Y 2008 Chin. Phys. B 17 419 |
[39] | Zhang Z J 2006 Opt. Commun. 261 199 |
[40] | Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648 |
[41] | Bandyopadhyay S 2000 Phys. Rev. A 62 012308 |
[42] | Hsu L Y 2003 Phys. Rev. A 68 022306 |
[43] | Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903 |
[44] | Yang Y G and Wen Q Y 2009 Int. J. Quantum Inform. 7 1249 |
[45] | Deng F G, Zhou H Y and Long G L 2005 Phys. Lett. A 337 329 |
[46] | Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302 |
[47] | Zhang Z J, Yang J, Man Z X and Li Y 2005 Eur. Phys. J. { D 33 133 |
[48] | Lance A M, Symul T, Bowen W P, Sanders B C, Tyc T, Ralph T C and Lam P K 2005 Phys. Rev. A 71 033814 |
[49] | Li X H, Deng F G, Zhou H Y 2007 Chin. Phys. Lett. 24 1151 |
[50] | Yang J and Liu J 2008 Commun. Theor. Phys. 49 338 |
[51] | Zhou P, Li X H, Deng F G and Zhou H Y 2007 J. Phys. A: Math.Theor. 40 13121 |
[52] | Zhan Y B 2007 Chin. Phys. 16 2557 |
[53] | Ji H, Zhan X G and Zeng H S 2007 Chin. Phys. Lett. 24 2724 |
[54] | Li X H and Deng F G 2008 Front. Comput. Sci. China 2 147 |
[55] | Long G L and Liu X S 2002 Phys. Rev. A 65 032302 |
[56] | Yeo Y and Chua W K 2006 Phys. Rev.Lett. 96 060502 |
[57] | Wang X W and Yang G J 2008 Phys. Rev. A 78 024301 |
[58] | Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131 |
[59] | D\"{Ur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 |
[60] | Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910 |
[61] | Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304 |
[62] | Xiu X M, Dong H K, Dong L, Gao Y J and Chi F 2009 Opt. Commun. 282 2457 |
[63] | Cai Q Y 2006 Phys. Lett. A 351 23 |
[64] | Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302 |
[65] | Qin S J, Gao F, Wen Q Y and Zhu F C 2006 Phys. Lett. A 357 101 |
[66] | Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302. |
[67] | Gao F, Qin S J, Wen Q Y and Zhu F C 2007 Quantum Inf. Comput. 7 329 |
[68] | Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557 |
[1] | Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Performance analysis of quantum key distribution using polarized coherent-states in free-space channel[J]. 中国物理B, 2023, 32(3): 30306-030306. |
[2] | Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Security of the traditional quantum key distribution protocolswith finite-key lengths[J]. 中国物理B, 2023, 32(3): 30307-030307. |
[3] | Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology[J]. 中国物理B, 2023, 32(2): 20304-020304. |
[4] | Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Novel traveling quantum anonymous voting scheme via GHZ states[J]. 中国物理B, 2023, 32(2): 20303-020303. |
[5] | Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Improving the teleportation of quantum Fisher information under non-Markovian environment[J]. 中国物理B, 2023, 32(1): 10303-010303. |
[6] | Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution[J]. 中国物理B, 2023, 32(1): 10305-010305. |
[7] | Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Measurement-device-independent one-step quantum secure direct communication[J]. 中国物理B, 2022, 31(12): 120303-120303. |
[8] | Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution[J]. 中国物理B, 2022, 31(12): 120304-120304. |
[9] | Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides[J]. 中国物理B, 2022, 31(11): 110301-110301. |
[10] | Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Analysis of atmospheric effects on the continuous variable quantum key distribution[J]. 中国物理B, 2022, 31(11): 110303-110303. |
[11] | Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Measurement-device-independent quantum secret sharing with hyper-encoding[J]. 中国物理B, 2022, 31(10): 100302-100302. |
[12] | Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors[J]. 中国物理B, 2022, 31(9): 90304-090304. |
[13] | Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Probabilistic quantum teleportation of shared quantum secret[J]. 中国物理B, 2022, 31(9): 90303-090303. |
[14] | A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Direct measurement of two-qubit phononic entangled states via optomechanical interactions[J]. 中国物理B, 2022, 31(8): 80307-080307. |
[15] | Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Purification in entanglement distribution with deep quantum neural network[J]. 中国物理B, 2022, 31(8): 80304-080304. |
|