中国物理B ›› 2006, Vol. 15 ›› Issue (6): 1172-1176.doi: 10.1088/1009-1963/15/6/008
许田1, 曹庄琪1, 欧永成1, 沈启舜1, 祝国龙2
Xu Tian (许田)a, Cao Zhuang-Qi (曹庄琪)a, Ou Yong-Cheng (欧永成)a, Shen Qi-Shun (沈启舜)a, Zhu Guo-Long (祝国龙)b
摘要: The analytical transfer matrix method (ATMM) is applied to calculating the critical radius $r_{\rm c}$ and the dipole polarizability $\alpha_{\rm d}$ in two confined systems: the hydrogen atom and the Hulth\'{e}n potential. We find that there exists a linear relation between $r_{\rm c}^{1/2}$ and the quantum number $n_{r}$ for a fixed angular quantum number $l$, moreover, the three bounds of $\alpha_{\rm d}$ ($\alpha_{\rm d}^{K}$, $\alpha_{\rm d}^{B}$, $\alpha_{\rm d}^{U}$) satisfy an inequality: $\alpha_{\rm d}^{K}\leq\alpha_{\rm d}^{B}\leq\alpha_{\rm d}^{U}$. A comparison between the ATMM, the exact numerical analysis, and the variational wavefunctions shows that our method works very well in the systems.
中图分类号: (Algebraic methods)