中国物理B ›› 2004, Vol. 13 ›› Issue (2): 178-186.doi: 10.1088/1009-1963/13/2/010
袁琳1, 冉启文2, 谭立英3, 马晶3, 王骐3
Ran Qi-Wen (冉启文)ab, Yuan Lin (袁琳)a, Tan Li-Ying (谭立英)b, Ma Jing (马晶)b, Wang Qi (王骐)b
摘要: We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT), is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M=+∞, M=4k(k is a natural number), and M=4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.
中图分类号: (Fourier optics)