中国物理B ›› 2022, Vol. 31 ›› Issue (5): 50701-050701.doi: 10.1088/1674-1056/ac4908
Jie Zhou(周洁)1,2, Xueyan Wang(王雪妍)1,2, Zhiqingzi Chen(陈支庆子)2, Libo Zhang(张力波)2, Chenyu Yao(姚晨禹)2, Weijie Du(杜伟杰)1, Jiazhen Zhang(张家振)2, Huaizhong Xing(邢怀中)2, Nanxin Fu(付南新)2, Gang Chen(陈刚)2, and Lin Wang(王林)1,2,†
Jie Zhou(周洁)1,2, Xueyan Wang(王雪妍)1,2, Zhiqingzi Chen(陈支庆子)2, Libo Zhang(张力波)2, Chenyu Yao(姚晨禹)2, Weijie Du(杜伟杰)1, Jiazhen Zhang(张家振)2, Huaizhong Xing(邢怀中)2, Nanxin Fu(付南新)2, Gang Chen(陈刚)2, and Lin Wang(王林)1,2,†
摘要: With the rapid development of terahertz technology, terahertz detectors are expected to play a key role in diverse areas such as homeland security and imaging, materials diagnostics, biology, medical sciences, and communication. Whereas self-powered, rapid response, and room temperature terahertz photodetectors are confronted with huge challenges. Here, we report a novel rapid response and self-powered terahertz photothermoelectronic (PTE) photodetector based on a low-dimensional material: palladium selenide (PdSe2). An order of magnitude performance enhancement was observed in photodetection based on PdSe2/graphene heterojunction that resulted from the integration of graphene and enhanced the Seebeck effect. Under 0.1-THz and 0.3-THz irradiations, the device displays a stable and repeatable photoresponse at room temperature without bias. Furthermore, rapid rise (5.0 μs) and decay (5.4 μs) times are recorded under 0.1-THz irradiation. Our results demonstrate the promising prospect of the detector based on PdSe2 in terms of air-stable, suitable sensitivity and speed, which may have great application in terahertz detection.
中图分类号: (Infrared, submillimeter wave, microwave, and radiowave sources)