中国物理B ›› 2020, Vol. 29 ›› Issue (9): 97201-097201.doi: 10.1088/1674-1056/aba9cf
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏)
Xiaozhang Chen(陈孝章)1, Lehua Gu(顾乐华)2, Lan Liu(刘岚)1, Huawei Chen(陈华威)1, Jingyu Li(栗敬俣)1, Chunsen Liu(刘春森)3, Peng Zhou(周鹏)1
摘要:
Due to their unique characteristics, two-dimensional (2D) materials have drawn great attention as promising candidates for the next generation of integrated circuits, which generate a calculation unit with a new working mechanism, called a logic transistor. To figure out the application prospects of logic transistors, exploring the temperature dependence of logic characteristics is important. In this work, we explore the temperature effect on the electrical characteristic of a logic transistor, finding that changes in temperature cause transformation in the calculation: logical output converts from ‘AND’ at 10 K to ‘OR’ at 250 K. The transformation phenomenon of temperature regulation in logical output is caused by energy band which decreases with increasing temperature. In the experiment, the indirect band gap of MoS2 shows an obvious decrease from 1.581 eV to 1.535 eV as the temperature increases from 10 K to 250 K. The change of threshold voltage with temperature is consistent with the energy band, which confirms the theoretical analysis. Therefore, as a promising material for future integrated circuits, the demonstrated characteristic of 2D transistors suggests possible application for future functional devices.
中图分类号: (Thermoelectric and thermomagnetic effects)