中国物理B ›› 2019, Vol. 28 ›› Issue (6): 60706-060706.doi: 10.1088/1674-1056/28/6/060706
• SPECIAL TOPIC—Recent advances in thermoelectric materials and devices • 上一篇 下一篇
Yong-Le Dang(党永乐), Fu-Long Liu(刘伏龙), Guang-Yong Fu(付光永), Di Wu(吴笛), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦)
Yong-Le Dang(党永乐)1,2, Fu-Long Liu(刘伏龙)1,2, Guang-Yong Fu(付光永)1,2, Di Wu(吴笛)2, Chuang-Ye He(贺创业)2, Bing Guo(郭冰)2, Nai-Yan Wang(王乃彦)1,2
摘要:
High energy γ-rays can be used in many fields, such as nuclear waste transmutation, flash photographics, and astrophysics. The 13C(p, γ)14N resonance reaction was used to generate high energy and mono-energetic γ-rays in this work. The thick-target yield of the 9.17-MeV γ-ray from the resonance in this reaction was determined to be (4.7±0.4)×10-9γ/proton, which was measured by a HPGe detector. Meanwhile, the angular distribution of 9.17-MeV γ-ray was also determined. The absolute efficiency of HPGe detector was calibrated using 56Co and 152Eu sources with known radioactive activities and calculated by GEANT4 simulation.
中图分类号: (X- and γ-ray sources, mirrors, gratings, and detectors)