中国物理B ›› 2019, Vol. 28 ›› Issue (3): 30303-030303.doi: 10.1088/1674-1056/28/3/030303
Yanjun Liu(刘彦军), Jing Lu(卢竞), Zhihui Peng(彭智慧), Lan Zhou(周兰), Dongning Zheng(郑东宁)
Yanjun Liu(刘彦军)1,2, Jing Lu(卢竞)1, Zhihui Peng(彭智慧)1, Lan Zhou(周兰)1, Dongning Zheng(郑东宁)2,3,4
摘要: We study the fringe visibility and the distinguishability of a general Mach-Zehnder interferometer with an asymmetric beam splitter. Both the fringe visibility V and the distinguishability D are affected by the input state of the particle characterized by the Bloch vector S=(Sx,Sy,Sz) and the second asymmetric beam splitter characterized by the paramter β. For the total system is initially in a pure state, it is found that the fringe visibility reaches the upper bound and the distinguishability reaches the lower bound when cosβ=-Sx. The fringe visibility obtain the maximum only if Sx=0 and β=π/2 when the input particle is initially in a mixed state. The complementary relationship V2+D2 ≤ 1 is proved in a general Mach-Zehnder interferometer with an asymmetric beam splitter, and the conditions for the equality are also presented.
中图分类号: (Quantum information)