中国物理B ›› 2017, Vol. 26 ›› Issue (3): 36601-036601.doi: 10.1088/1674-1056/26/3/036601
• CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES • 上一篇 下一篇
Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮)
Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮)
摘要: Viscosities of pure Ga, Ga80Ni20, and Ga80Cr20 metallic melts under a horizontal magnetic field were investigated by a torsional oscillation viscometer. A mathematical physical model was established to quantitatively describe the viscosity of single and binary metallic melts under a horizontal magnetic field. The relationship between the viscosity and the electrical resistivity under the horizontal magnetic field was studied, which can be described as ηB=η+(2H)/(πΩ)B2 (ηB is the viscosity under the horizontal magnetic field, η is the viscosity without the magnetic field, H is the height of the sample, Ω is the electrical resistivity, and B is the intensity of magnetic field). The viscosity under the horizontal magnetic field is proportional to the square of the intensity of the magnetic field, which is in very good agreement with the experimental results. In addition, the proportionality coefficient of ηB and quadratic B, which is related to the electrical resistivity, conforms to the law established that increasing the temperature of the completely mixed melts is accompanied by an increase of the electrical resistivity. We can predict the viscosity of metallic melts under magnetic field by measuring the electrical resistivity based on our equation, and vice versa. This discovery is important for understanding condensed-matter physics under external magnetic field.
中图分类号: (Studies of viscosity and rheological properties of specific liquids)