中国物理B ›› 2011, Vol. 20 ›› Issue (1): 17102-017102.doi: 10.1088/1674-1056/20/1/017102
• CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES • 上一篇 下一篇
叶小球, 罗德礼, 桑革, 敖冰云
收稿日期:
2010-05-12
修回日期:
2010-09-14
出版日期:
2011-01-15
发布日期:
2011-01-15
基金资助:
Ye Xiao-Qiu(叶小球)†, Luo De-Li(罗德礼), Sang Ge(桑革), and Ao Bing-Yun(敖冰云)
Received:
2010-05-12
Revised:
2010-09-14
Online:
2011-01-15
Published:
2011-01-15
Supported by:
摘要: The alanates (complex aluminohydrides) have relatively high gravimetric hydrogen densities and are among the most promising solid-state hydrogen-storage materials. In this work, the electronic structures and the formation enthalpies of seven typical aluminum-based deuterides have been calculated by the plane-wave pseudopotential method, these being AlD3, LiAlD4, Li3AlD6, BaAlD5, Ba2AlD7, LiMg(AlD4)3 and LiMgAlD6. The results show that all these compounds are large band gap insulators at 0 K with estimated band gaps from 2.31 eV in AlD3 to 4.96 eV in LiMg(AlD4)3. The band gaps are reduced when the coordination of Al varies from 4 to 6. Two peaks present in the valence bands are the common characteristics of aluminum-based deuterides containing AlD4 subunits while three peaks are the common characteristics of those containing AlD6 subunits. The electronic structures of these compounds are determined mainly by aluminum deuteride complexes (AlD4 or AlD6) and their mutual interactions. The predicted formation enthalpies are presented for the studied aluminum-based deuterides.
中图分类号: (Density functional theory, local density approximation, gradient and other corrections)
叶小球, 罗德礼, 桑革, 敖冰云. Electronic structures and thermodynamic stabilities of aluminum-based deuterides from first principles calculations[J]. 中国物理B, 2011, 20(1): 17102-017102.
Ye Xiao-Qiu(叶小球), Luo De-Li(罗德礼), Sang Ge(桑革), and Ao Bing-Yun(敖冰云). Electronic structures and thermodynamic stabilities of aluminum-based deuterides from first principles calculations[J]. Chin. Phys. B, 2011, 20(1): 17102-017102.
[1] | Bogdanovic B and Schwickardi M 1997 J. Alloys Compd. 253 1 |
[2] | Hauback B C 2008 Z. Kristallogr. 223 636 |
[3] | Graetz J, Lee Y, Reilly J J, Park S and Vogt T 2005 Phys. Rev. B 71 184115 |
[4] | Zhu G L, Shu D, Dai Y B, Sun B D and Wang J 2009 Acta Phys. Sin. 58 S210 (in Chinese) |
[5] | Chen L J, Hou Z F, Zhu Z Z and Yang Y 2003 Acta Phys. Sin. 52 2229 (in Chinese) |
[6] | Ashby E C, Sanders J R, Claudy P and Schwartz R D 1973 Inorg. Chem. 12 2860 |
[7] | Zhou J J, Chen Y G, Wu C L, Zheng X, Fang Y C and Gao T 2009 Acta Phys. Sin. 58 4853 |
[8] | Brinks H W, Hauback B C, Jensen C M and Zidan R 2005 J. Alloys Compd. 392 27 |
[9] | Brinks H W, Istad-Lem A and Hauback B C 2006 J. Phys. Chem. B 110 25833 |
[10] | Grove H, Brinks H W, Heyn R H, Wu F J, Opalka S M, Tang X, Laube B L and Hauback B C 2008 J. Alloys Compd. 455 249 |
[11] | Grove H, Brinks H W, Lovvik O M, Heyn R H and Hauback B C 2008 J. Alloys Compd. 460 64 |
[12] | Lovvik O M and Swang O 2005 J. Alloys Compd. 404 757 |
[13] | Yoshino M, Komiya K, Takahashi Y, Shinzato Y, Yukawa H and Morinaga M 2005 J. Alloys Compd. 404 185 |
[14] | Orgaz E, Membrillo A, Castaneda R and Aburto A 2005 J. Alloys Compd. 404--406 176 |
[15] | Song Y, Singh R and Guo Z X 2006 J. Phys. Chem. B 110 6906 |
[16] | Ke X Z, Kuwabara A and Tanaka I 2005 Phys. Rev. B 71 184107 |
[17] | Wang Y, Yan J A and Chou M Y 2008 Phys. Rev. B 77 014101 |
[18] | van Setten M J, Popa V A, de Wijs G A and Brocks G 2007 Phys. Rev. B 75 035204 |
[19] | Klaveness A, Vajeeston P, Ravindran P, Fjellvaag H and Kjekshus A 2006 Phys. Rev. B 75 094122 |
[20] | Zhang Q A, Nakamura Y, Oikawa K, Kamiyama T and Akiba E 2002 Inorg. Chem. 41 6941 |
[21] | Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671 |
[22] | Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Cond. Matt. 14 2717 |
[23] | Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768 |
[24] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 |
[25] | Hu C H, Chen D M, Wang Y M, Xu D S and Yang K 2007 Phys. Rev. B 75 224108 |
[26] | Graetz J, Chaudhuri S, Lee Y, Vogt T, Muckerman J T and Reilly J J 2006 Phys. Rev. B 74 214114 |
[27] | Sun S T, Ke X Z, Chen C F and Tanaka I 2009 Phys. Rev. B 79 0241041 |
[28] | Brinks H W, Brown C, Jensen C M, Graetz J, Reilly J J and Hauback B C 2007 J. Alloys Compd. 441 364 |
[29] | Haubacka B C, Brinks H W and Fjellv^ag H 2002 J. Alloys Compd. 346 184 |
[30] | Brinks H W and Hauback B C 2003 J. Alloys Compd. 354 143 |
[31] | Zhang Q A, Nakamura Y, Oikawa K, Kamiyama T and Akiba E 2003 J. Alloys Compd. 361 180 |
[32] | Hauback B C, Brinks H W, Jensenb C M, Murphyb K and Maelanda A J 2003 J. Alloys Compd. 358 142 |
[33] | Hauback B C, Brinks H W, Heyn R H, Blom R and Fjellvaag H 2005 J. Alloys Compd. 394 35 |
[34] | Song Y and Guo Z X 2006 Phys. Rev. B 74 195120 |
[35] | Singh D J 2005 Phys. Rev. B 71 216101 |
[36] | Vajeeston P, Ravindran P, Kjekshus A and Fjellvag H 2005 Phys. Rev. B 71 216102 |
[37] | Lovvik O M, Opalka S M, Brinks H W and Hauback B C 2004 Phys. Rev. B 69 134117 |
[38] | Grochala W and Edwards P P 2004 Chem. Rev. 104 1283 |
[39] | Miwa K, Ohba N, Towata S, Nakamori Y and Orimo S 2004 Phys. Rev. B 69 245120 |
[40] | Graetz J, Reilly J J, Kulleck J G and Bowman R C 2007 J. Alloys Compd. 446 271 |
[41] | Claudy P, Bonnetot B, Letoffe J M and Turck G 1978 Thermochim Acta 27 213 |
[42] | Chen J, Kuriyama N, Xu Q, Takeshita H T and Sakai T 2001 J. Phys. Chem. B 105 11214 |
[43] | Liu X F, Asano K, Sakaki K, Nakamura Y, Enoki H and Akiba E 2008 J. Phys. Chem. C 112 17423 endfootnotesize |
[1] | Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability[J]. 中国物理B, 2023, 32(4): 47102-047102. |
[2] | Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F[J]. 中国物理B, 2023, 32(3): 37101-037101. |
[3] | Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal[J]. 中国物理B, 2023, 32(3): 37103-037103. |
[4] | Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride[J]. 中国物理B, 2023, 32(3): 37104-037104. |
[5] | Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice[J]. 中国物理B, 2023, 32(2): 27101-027101. |
[6] | Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics[J]. 中国物理B, 2023, 32(2): 27104-027104. |
[7] | Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Magnetic ground state of plutonium dioxide: DFT+U calculations[J]. 中国物理B, 2023, 32(2): 27103-027103. |
[8] | Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene[J]. 中国物理B, 2022, 31(12): 126101-126101. |
[9] | Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Robust and intrinsic type-III nodal points in a diamond-like lattice[J]. 中国物理B, 2022, 31(11): 117101-117101. |
[10] | Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure[J]. 中国物理B, 2022, 31(10): 107304-107304. |
[11] | Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Advances and challenges in DFT-based energy materials design[J]. 中国物理B, 2022, 31(10): 107105-107105. |
[12] | Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). First-principles study of a new BP2 two-dimensional material[J]. 中国物理B, 2022, 31(8): 86107-086107. |
[13] | Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Adaptive semi-empirical model for non-contact atomic force microscopy[J]. 中国物理B, 2022, 31(8): 88202-088202. |
[14] | Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons[J]. 中国物理B, 2022, 31(8): 87103-087103. |
[15] | Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures[J]. 中国物理B, 2022, 31(6): 67101-067101. |
|