中国物理B ›› 2024, Vol. 33 ›› Issue (12): 127504-127504.doi: 10.1088/1674-1056/ad8cba

• • 上一篇    下一篇

Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max

Mehran Khan Alam, Shahzab Raza, Chengyong Gao(高成勇), Guangbing Han(韩广兵)†, and Shishou Kang(康仕寿)‡   

  1. School of Physics, Shandong University, Jinan 250100, China
  • 收稿日期:2024-07-22 修回日期:2024-10-15 接受日期:2024-10-30 出版日期:2024-12-15 发布日期:2024-12-03
  • 通讯作者: Guangbing Han, Shishou Kang E-mail:hangb@sdu.edu.cn;skang@sdu.edu.cn
  • 基金资助:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 12074220 and 11627805) and the National Key Research and Development Program of China (Grant No. 2023YFA1406604).

Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max

Mehran Khan Alam, Shahzab Raza, Chengyong Gao(高成勇), Guangbing Han(韩广兵)†, and Shishou Kang(康仕寿)‡   

  1. School of Physics, Shandong University, Jinan 250100, China
  • Received:2024-07-22 Revised:2024-10-15 Accepted:2024-10-30 Online:2024-12-15 Published:2024-12-03
  • Contact: Guangbing Han, Shishou Kang E-mail:hangb@sdu.edu.cn;skang@sdu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 12074220 and 11627805) and the National Key Research and Development Program of China (Grant No. 2023YFA1406604).

摘要: The melt-spun ribbons of nominal composition Pr$_{9}$Fe$_{84.2-x}$B$_{6.2}$P$_{0.3}$Zr$_{0.3}$Cu$_{x}$ ($x=0$, 0.5, 1, 2) were prepared at wheel speeds of 21 m$\cdot$s$^{-1}$, 27 m$\cdot$s$^{-1}$, 30 m$\cdot$s$^{-1}$, and 33 m$\cdot$s$^{-1}$. The XRD patterns show that as the wheel speed increases, the crystallinity of the 2:14:1 hard phase decreases, while that of the $\alpha $-Fe soft phase increases. The $(BH)_{\rm max}$, remanence, and coercivity are improved from 63 kJ$\cdot$m$^{-3}$, 0.85 T, and 515 kA$\cdot$m$^{-1}$ for the Cu-free ribbons to 171 kJ$\cdot$m$^{-3}$, 1.08 T, and 684 kA$\cdot$m$^{-1}$ with $x=0.5$. The high squareness ratio of $J_{\rm r}/J_{\rm s} \sim 0.82$ at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$) indicates strong exchange coupling due to small grain sizes of 15 nm and 30 nm for soft and hard magnetic phases, respectively. The SEM images revealed smooth morphology and uniform element distribution at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$), contributing to the high magnetic properties. The low recoil permeability ($\mu_{\rm rec}$) value of $5.466\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ to $1.970\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ confirms the strong exchange coupling with $x=0.5$ (27 m$\cdot$s$^{-1}$). The initial magnetization curves show that the coercivity mechanism of the Cu-free alloy evolves from the nucleation of the reverse domain to the domain wall pinning as the wheel speed increases, resulting in a high coercivity value of 818 kA$\cdot$m$^{-1}$ (33 m$\cdot$s$^{-1}$). Conversely, for the Cu-added alloy, the coercivity mechanism changes from pinning to the nucleation of the reverse domain from low to high wheel speed.

关键词: Cu addition, nanocomposite, magnetic properties, energy product, remanence

Abstract: The melt-spun ribbons of nominal composition Pr$_{9}$Fe$_{84.2-x}$B$_{6.2}$P$_{0.3}$Zr$_{0.3}$Cu$_{x}$ ($x=0$, 0.5, 1, 2) were prepared at wheel speeds of 21 m$\cdot$s$^{-1}$, 27 m$\cdot$s$^{-1}$, 30 m$\cdot$s$^{-1}$, and 33 m$\cdot$s$^{-1}$. The XRD patterns show that as the wheel speed increases, the crystallinity of the 2:14:1 hard phase decreases, while that of the $\alpha $-Fe soft phase increases. The $(BH)_{\rm max}$, remanence, and coercivity are improved from 63 kJ$\cdot$m$^{-3}$, 0.85 T, and 515 kA$\cdot$m$^{-1}$ for the Cu-free ribbons to 171 kJ$\cdot$m$^{-3}$, 1.08 T, and 684 kA$\cdot$m$^{-1}$ with $x=0.5$. The high squareness ratio of $J_{\rm r}/J_{\rm s} \sim 0.82$ at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$) indicates strong exchange coupling due to small grain sizes of 15 nm and 30 nm for soft and hard magnetic phases, respectively. The SEM images revealed smooth morphology and uniform element distribution at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$), contributing to the high magnetic properties. The low recoil permeability ($\mu_{\rm rec}$) value of $5.466\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ to $1.970\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ confirms the strong exchange coupling with $x=0.5$ (27 m$\cdot$s$^{-1}$). The initial magnetization curves show that the coercivity mechanism of the Cu-free alloy evolves from the nucleation of the reverse domain to the domain wall pinning as the wheel speed increases, resulting in a high coercivity value of 818 kA$\cdot$m$^{-1}$ (33 m$\cdot$s$^{-1}$). Conversely, for the Cu-added alloy, the coercivity mechanism changes from pinning to the nucleation of the reverse domain from low to high wheel speed.

Key words: Cu addition, nanocomposite, magnetic properties, energy product, remanence

中图分类号:  (Magnetic properties of nanostructures)

  • 75.75.-c
75.50.Ww (Permanent magnets) 75.60.Jk (Magnetization reversal mechanisms) 75.75.Cd (Fabrication of magnetic nanostructures)