中国物理B ›› 2024, Vol. 33 ›› Issue (9): 94203-094203.doi: 10.1088/1674-1056/ad6130
Yi Zhang(张燚)1,2,†, Qiyuan Jiang(江奇渊)1,2,†, Bingfeng Sun(孙兵锋)1,2,‡, Jiahu Wei(魏加湖)3, Lin Yang(杨麟)3, Yongyuan Li(李永远)3, Zhiguo Wang(汪之国)1,2,§, Kaiyong Yang(杨开勇)1,2, and Hui Luo(罗晖)1,2
Yi Zhang(张燚)1,2,†, Qiyuan Jiang(江奇渊)1,2,†, Bingfeng Sun(孙兵锋)1,2,‡, Jiahu Wei(魏加湖)3, Lin Yang(杨麟)3, Yongyuan Li(李永远)3, Zhiguo Wang(汪之国)1,2,§, Kaiyong Yang(杨开勇)1,2, and Hui Luo(罗晖)1,2
摘要: The dynamic range of the nuclear magnetic resonance gyroscope can be effectively improved through the closed-loop control scheme, which is crucial to its application in inertial measurement. This paper presents the analytical transfer function of Xe closed-loop system in the nuclear magnetic resonance gyroscope considering Rb-Xe coupling effect. It not only considers the dynamic characteristics of the system more comprehensively, but also adds the influence of the practical filters in the gyro signal processing system, which can obtain the accurate response characteristics of signal frequency and amplitude at the same time. The numerical results are compared with an experimentally verified simulation program, which indicate great agreement. The research results of this paper are of great significance to the practical application and development of the nuclear magnetic resonance gyroscope.
中图分类号: (Sensors, gyros)