中国物理B ›› 2020, Vol. 29 ›› Issue (6): 64207-064207.doi: 10.1088/1674-1056/ab836f
• ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS • 上一篇 下一篇
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才)
收稿日期:
2019-12-29
修回日期:
2020-02-24
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
Shun-Cai Zhao
E-mail:zhaosc@kust.edu.cn
基金资助:
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才)
Received:
2019-12-29
Revised:
2020-02-24
Online:
2020-06-05
Published:
2020-06-05
Contact:
Shun-Cai Zhao
E-mail:zhaosc@kust.edu.cn
Supported by:
摘要: Inhibiting the radiative radiation is an efficient approach to enhance quantum yields in a solar sell. This work carries out the inhibition of radiative recombination rate (RRR) in a quantum photocell with two coupled donors. We perform explicit calculations of the transition rates, energy gaps and the absorbed solar wavelength-dependent RRR, and find that two different regimes play the crucial roles in inhibiting RRR. One is the quantum coherence generated from two different transition channels, the other includes the absorbed photon wavelength and gaps between the donor and acceptor in this proposed photocell model. The results imply that there may be some efficient ways to enhance the photoelectron conversion compared to the classic solar cell.
中图分类号: (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
陈镜伊, 赵顺才. Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell[J]. 中国物理B, 2020, 29(6): 64207-064207.
Jing-Yi Chen(陈镜伊), Shun-Cai Zhao(赵顺才). Inhibiting radiative recombination rate to enhance quantum yields in a quantum photocell[J]. Chin. Phys. B, 2020, 29(6): 64207-064207.
[1] | Würfel P 2016 Physics of solar cells: from basic principles to advanced concepts 3rd edn (Birlin: Wiley-VCH) |
[2] |
Huang H B, Tian G Y, Zhou L, Yuan J R, Fahrner W R, Zhang W B, Li X B, Chen W H and Liu R Z 2018 Chin. Phys. B 27 038502
doi: 10.1088/1674-1056/27/3/038502 |
[3] |
Du H J, Wang W C and Gu Y F 2017 Chin. Phys. B 26 028803
doi: 10.1088/1674-1056/26/2/028803 |
[4] |
Chen W B, Xu Z X, Li K, Chui S S Y, Roy V A L, Lai P T and Che C M 2012 Chin. Phys. B 21 078401
doi: 10.1088/1674-1056/21/7/078401 |
[5] |
Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
doi: 10.1063/1.1736034 |
[6] |
Henry C H and Henry C H 1980 J. Appl. Phys. 51 4494
doi: 10.1063/1.328272 |
[7] |
Li J M, Chong M, Zhu J C, Li Y J, Xu J D, Wang P D, Shang Z Q, Yang Z K, Zhu R H and Cao X L 1992 Appl. Phys. Lett. 60 2240
doi: 10.1063/1.107042 |
[8] |
Bruns J, Seifert W, Wawer P, Winnicke H, Braunig D and Wagemann H G 1994 Appl. Phys. Lett. 64 2700
doi: 10.1063/1.111496 |
[9] |
Luque A and Mart A 1997 Phys. Rev. Lett. 78 5014
doi: 10.1103/PhysRevLett.78.5014 |
[10] |
Kasai H and Matsumura H 1997 Sol. Energy Mater. Sol. Cells 48 93
doi: 10.1016/S0927-0248(97)00075-5 |
[11] |
Han L Y, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A and Yamanaka R 2005 Appl. Phys. Lett. 86 213501
doi: 10.1063/1.1925773 |
[12] |
Engel G S, Calhoun T R, Read E L, Tae-Kyu A, Tomäs M, Cheng Y C, Blankenship R E and Fleming G R 2007 Nature 446 782
doi: 10.1038/nature05678 |
[13] |
Mukti R J, Hossain M R, Islam A, Mekhilef S and Horan B 2019 Energies 12 2602
doi: 10.3390/en12132602 |
[14] |
Guo P F, Ye Q, Yang X K, Zhang J and Wang H Q 2019 J. Mater. Chem. A 7 2497
doi: 10.1039/C8TA11524A |
[15] |
Scully M O 2010 Phys. Rev. Lett. 104 207701
doi: 10.1103/PhysRevLett.104.207701 |
[16] |
Scully M O, Chapin K R, Dorfman K E, Moochan B K and Anatoly S 2011 Proc. Natl. Acad. Sci. USA 108 15097
doi: 10.1073/pnas.1110234108 |
[17] |
Svidzinsky A A, Dorfman K E and Scully M O 2011 Phys. Rev. A 84 053818
doi: 10.1103/PhysRevA.84.053818 |
[18] |
Kühn O and Lochbrunner S 2011 Semiconductors and Semimetals 85 47
doi: 10.1016/B978-0-12-391060-8.00002-2 |
[19] |
Killoran N, Huelga S F and Plenio M B 2015 J. Chem. Phys. 143 155102
doi: 10.1063/1.4932307 |
[20] |
Yao Y 2015 Phys. Rev. B 91 045421
doi: 10.1103/PhysRevB.91.045421 |
[21] |
Zhang Y T, Sangchul O, Alharbi F H, Engel G S and Sabre K 2015 Phys. Chem. Chem. Phys. 17 5743
doi: 10.1039/C4CP05310A |
[22] | Sangchul O 2017 arXiv:1709.08337 |
[23] |
Daryani M, Rostami A, Darvish G and Farshi M K M 2017 Opt. Quantum Electron. 49 255
doi: 10.1007/s11082-017-1090-8 |
[24] |
Zhao S C and Chen J Y 2019 New J. Phys. 21 103015
doi: 10.1088/1367-2630/ab473a |
[25] |
Zhao S C and Wu Q X 2020 Superlattices Microstruct. 137 106329
doi: 10.1016/j.spmi.2019.106329 |
[26] |
Handy R J 1967 Solid State Electron. 10 765
doi: 10.1016/0038-1101(67)90159-1 |
[27] |
Saǧlam M, Ayyildiz E, Gümüs A, Türüt A, Efeoǧlu H and Tüzemen S 1996 Appl. Phys. A 62 269
doi: 10.1007/s003390050297 |
[28] |
Kar G S, Maikap S, Banerjee S K and Ray S K 2002 Semicond. Sci. Technol. 17 938
doi: 10.1088/0268-1242/17/9/306 |
[29] |
Kajiyama Y, Joseph K, Kajiyama K, Kudo S and Aziz H 2012 Sid Symp. Dig. Tech. Papers 43 1544
doi: 10.1002/j.2168-0159.2012.tb06110.x |
[30] |
Luque A, Mellor A, Ramiro I, Antoln E, Tobas I and Mart A 2013 Sol. Energy Mater. Sol. Cells 115 138
doi: 10.1016/j.solmat.2013.03.008 |
[31] |
Tian L and Dagenais M 2015 Appl. Phys. Lett. 106 171101
doi: 10.1063/1.4919381 |
[32] |
Kum H, Dai Y S, Aihara T, Slocum M A, Tayagaki T, Fedorenko A, Polly S J, Bittner Z, Sugaya T and Hubbard S M 2018 Appl. Phys. Lett. 113 043902
doi: 10.1063/1.5037238 |
[33] |
Richards B S 2006 Sol. Energy Mater. Sol. Cells 90 2329
doi: 10.1016/j.solmat.2006.03.035 |
[34] |
Conibeer G, Patterson R, Huang L M, Guillemoles J F, Konig D, Shrestha S and Green M A 2010 Sol. Energy Mater. Sol. Cells 94 1516
doi: 10.1016/j.solmat.2010.01.018 |
[35] | Hirst L, Führer M, Farrell D J et al. 2011 37th IEEE Photovoltaic Specialists Conference (Seattle, WA) p. 003302 |
[36] | Conibeer G, Shrestha S, Huang S J, Patterson R, Aliberti P, Xia H, Feng Y, Gupta N, Smyth S and Liao Y 2012 38th IEEE Photovoltaic Specialists Conference (Austin, TX) p. 000032 |
[37] |
Graziani F R 2004 J. Quant. Spectrosc. Radiat. Transfer 83 711
doi: 10.1016/S0022-4073(03)00116-X |
[38] | Yi Y, Massuda A, Roques-Carmes C, Kooi S E, Christensen T, Johnson S G, Joannopoulos J D, Miller O D, Kaminer I and Soljai M 2018 Nat. Phys. 14 67 |
[39] |
Würfel P 2007 CHIMIA Int. J. Chem. 61 770
doi: 10.2533/chimia.2007.770 |
[40] |
Creatore C, Parker M A, Emmott S and Chin A W 2013 Phys. Rev. Lett. 111 253601
doi: 10.1103/PhysRevLett.111.253601 |
[41] |
Abramavicius D, Benoit P and Shaul M 2009 Chem. Phys. 357 79
doi: 10.1016/j.chemphys.2008.10.010 |
[42] |
Dorfman K E, Voronine D V, Shaul M and Scully M O 2013 Proc. Natl. Acad. Sci. USA 110 2746
doi: 10.1073/pnas.1212666110 |
[43] | Dorfman K E, Svidzinsky A A and Scully M O 2013 Coherent Opt. Phenom. 1 42 |
[1] | Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Modulated spatial transmission signals in the photonic bandgap[J]. 中国物理B, 2022, 31(12): 124209-124209. |
[2] | Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency[J]. 中国物理B, 2022, 31(12): 123201-123201. |
[3] | Jiu-Sheng Li(李九生)† and Zhe-Wen Li(黎哲文). Dual-function terahertz metasurface based on vanadium dioxide and graphene[J]. 中国物理B, 2022, 31(9): 94201-094201. |
[4] | Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction[J]. 中国物理B, 2022, 31(7): 74204-074204. |
[5] | Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas[J]. 中国物理B, 2022, 31(7): 73201-073201. |
[6] | Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock[J]. 中国物理B, 2022, 31(3): 34209-034209. |
[7] | Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device[J]. 中国物理B, 2022, 31(2): 27802-027802. |
[8] | Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening[J]. 中国物理B, 2022, 31(2): 24201-024201. |
[9] | Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Lattice plasmon mode excitation via near-field coupling[J]. 中国物理B, 2022, 31(1): 14214-014214. |
[10] | Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules[J]. 中国物理B, 2022, 31(1): 14202-014202. |
[11] | Dan Hu(胡丹), Tian-Hua Meng(孟田华), Hong-Yan Wang(王红燕), and Mai-Xia Fu(付麦霞). Actively tunable dual-broadband graphene-based terahertz metamaterial absorber[J]. 中国物理B, 2021, 30(12): 126101-126101. |
[12] | Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). A low noise, high fidelity cross phase modulation in multi-level atomic medium[J]. 中国物理B, 2021, 30(11): 114204-114204. |
[13] | Abdul Wahab. High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency[J]. 中国物理B, 2021, 30(9): 94202-094202. |
[14] | Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials[J]. 中国物理B, 2021, 30(9): 96103-096103. |
[15] | Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Quantum storage of single photons with unknown arrival time and pulse shapes[J]. 中国物理B, 2021, 30(8): 84207-084207. |
|