中国物理B ›› 2018, Vol. 27 ›› Issue (8): 87402-087402.doi: 10.1088/1674-1056/27/8/087402

• CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES • 上一篇    下一篇

Nonlinear uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2

Hui-Can Mao(毛慧灿), Dong-Liang Gong(龚冬良), Xiao-Yan Ma(马肖燕), Hui-Qian Luo(罗会仟), Yi-Feng Yang(杨义峰), Lei Shan(单磊), Shi-Liang Li(李世亮)   

  1. 1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
    2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
    3 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
  • 收稿日期:2018-04-16 修回日期:2018-05-24 出版日期:2018-08-05 发布日期:2018-08-05
  • 通讯作者: Shi-Liang Li E-mail:slli@iphy.ac.cn
  • 基金资助:

    Project supported by the Science Fonds from the Ministry of Science and Technology of China (Grant Nos. 2017YFA0302903, 017YFA0303103, 2016YFA0300502, and 2015CB921302), the National Natural Science Foundation of China (Grant Nos. 11674406 and 11674372), the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant Nos. XDB07020300 and XDB07020200), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Nonlinear uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2

Hui-Can Mao(毛慧灿)1,2, Dong-Liang Gong(龚冬良)1,2, Xiao-Yan Ma(马肖燕)1,2, Hui-Qian Luo(罗会仟)1, Yi-Feng Yang(杨义峰)1,2,3, Lei Shan(单磊)1,2,3, Shi-Liang Li(李世亮)1,2,3   

  1. 1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
    2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
    3 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
  • Received:2018-04-16 Revised:2018-05-24 Online:2018-08-05 Published:2018-08-05
  • Contact: Shi-Liang Li E-mail:slli@iphy.ac.cn
  • Supported by:

    Project supported by the Science Fonds from the Ministry of Science and Technology of China (Grant Nos. 2017YFA0302903, 017YFA0303103, 2016YFA0300502, and 2015CB921302), the National Natural Science Foundation of China (Grant Nos. 11674406 and 11674372), the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant Nos. XDB07020300 and XDB07020200), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

摘要:

Nematic order and its fluctuations have been widely found in iron-based superconductors. Above the nematic order transition temperature, the resistivity shows a linear relationship with the uniaxial pressure or strain along the nematic direction and the normalized slope is thought to be associated with nematic susceptibility. Here we systematically studied the uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2, where nonlinear behaviors are observed near the nematic transition temperature. We show that it can be well explained by the Landau theory for the second-order phase transitions considering that the external field is not zero. The effect of the coupling between the isotropic and nematic channels is shown to be negligible. Moreover, our results suggest that the nature of the magnetic and nematic transitions in Sr1-xBaxFe2As2 is determined by the strength of the magnetic-elastic coupling.

关键词: iron-based superconductors, nematic order, uniaxial pressure, resistivity

Abstract:

Nematic order and its fluctuations have been widely found in iron-based superconductors. Above the nematic order transition temperature, the resistivity shows a linear relationship with the uniaxial pressure or strain along the nematic direction and the normalized slope is thought to be associated with nematic susceptibility. Here we systematically studied the uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2, where nonlinear behaviors are observed near the nematic transition temperature. We show that it can be well explained by the Landau theory for the second-order phase transitions considering that the external field is not zero. The effect of the coupling between the isotropic and nematic channels is shown to be negligible. Moreover, our results suggest that the nature of the magnetic and nematic transitions in Sr1-xBaxFe2As2 is determined by the strength of the magnetic-elastic coupling.

Key words: iron-based superconductors, nematic order, uniaxial pressure, resistivity

中图分类号:  (Pnictides and chalcogenides)

  • 74.70.Xa
74.25.F- (Transport properties)