中国物理B ›› 2018, Vol. 27 ›› Issue (12): 120502-120502.doi: 10.1088/1674-1056/27/12/120502
• SPECIAL TOPIC—Recent advances in thermoelectric materials and devices • 上一篇 下一篇
Sujuan Li(李素娟), Jiangchuan Niu(牛江川), Xianghong Li(李向红)
收稿日期:
2018-08-24
修回日期:
2018-09-29
出版日期:
2018-12-05
发布日期:
2018-12-05
通讯作者:
Jiangchuan Niu
E-mail:menjc@163.com
基金资助:
Project supported by the National Natural Science Foundation of China (Grant Nos. 11872254 and 11672191).
Sujuan Li(李素娟)1, Jiangchuan Niu(牛江川)2, Xianghong Li(李向红)3
Received:
2018-08-24
Revised:
2018-09-29
Online:
2018-12-05
Published:
2018-12-05
Contact:
Jiangchuan Niu
E-mail:menjc@163.com
Supported by:
Project supported by the National Natural Science Foundation of China (Grant Nos. 11872254 and 11672191).
摘要:
The dynamical properties of fractional-order Duffing-van der Pol oscillator are studied, and the amplitude-frequency response equation of primary resonance is obtained by the harmonic balance method. The stability condition for steady-state solution is obtained based on Lyapunov theory. The comparison of the approximate analytical results with the numerical results is fulfilled, and the approximations obtained are in good agreement with the numerical solutions. The bifurcations of primary resonance for system parameters are analyzed. The results show that the harmonic balance method is effective and convenient for solving this problem, and it provides a reference for the dynamical analysis of similar nonlinear systems.
中图分类号: (Nonlinear dynamics and chaos)
李素娟, 牛江川, 李向红. Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method[J]. 中国物理B, 2018, 27(12): 120502-120502.
Sujuan Li(李素娟), Jiangchuan Niu(牛江川), Xianghong Li(李向红). Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method[J]. Chin. Phys. B, 2018, 27(12): 120502-120502.
[1] | Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) p. 10 |
[2] | Petras I 2011 Fractional-Order Nonlinear Systems (Beijing: Higher Education Press) p. 19 |
[3] | Li C P and Deng W H 2007 Appl. Math. Comput. 187 777 |
[4] |
Chen J H and Chen W C 2008 Chaos, Solitons and Fractals 35 188
doi: 10.1016/j.chaos.2006.05.010 |
[5] |
Yang S P and Shen Y J 2009 Chaos, Solitons and Fractals 40 1808
doi: 10.1016/j.chaos.2007.09.064 |
[6] | Yang J H, Ma Q, Wu C J and Liu H G 2018 Acta Phys. Sin. 67 054501 (in Chinese) |
[7] |
Sun H G, Zhang Y, Baleanu D, Chen W and Chen Y Q 2018 Commun. Nonlinear Sci. Num. Simul. 64 213
doi: 10.1016/j.cnsns.2018.04.019 |
[8] |
Li X H and Hou J Y 2016 Int. J. Nonlin. Mech. 81 165
doi: 10.1016/j.ijnonlinmec.2016.01.014 |
[9] |
Rossikhin Y A and Shitikova M V 1997 Acta Mech. 120 109
doi: 10.1007/BF01174319 |
[10] |
Shen Y J, Wei P and Yang S P 2014 Nonlinear Dyn. 77 1629
doi: 10.1007/s11071-014-1405-2 |
[11] |
André S, Meshaka Y and Cunat C 2003 Rheol. Acta 42 500
doi: 10.1007/s00397-003-0305-z |
[12] | Maqbool K, Bég O A and Sohail A 2016 Eur. Phys. J. 131 1 |
[13] |
Wang Q H and Tong D K 2010 Transport Porous Med. 81 295
doi: 10.1007/s11242-009-9401-6 |
[14] | Wahi P and Chatterjee A 2004 Nonlinear Dyn. 38 3 |
[15] |
Chen L C, Zhao T L, Li W and Zhao J 2016 Nonlinear Dyn. 83 529
doi: 10.1007/s11071-015-2345-1 |
[16] |
Shen Y J, Niu J C, Yang S P and Li S J 2016 J. Comput. Nonlinear Dyn. 11 051027
doi: 10.1115/1.4033443 |
[17] |
Xu Y, Li Y G, Liu D, Jia W T and Huang H 2013 Nonlinear Dyn. 74 745
doi: 10.1007/s11071-013-1002-9 |
[18] |
Shen Y J, Wen S F, Li X H, Yang S P and Xing H J 2016 Nonlinear Dyn. 85 1457
doi: 10.1007/s11071-016-2771-8 |
[19] | Xie F and Lin X Y 2009 Phys. Scr. 136 14033 |
[20] |
R, R H, Sah S M and Suchorsky M K 2010 Commun. Nonlinear Sci. 15 3254
doi: 10.1016/j.cnsns.2009.12.009 |
[21] | Yang J H and Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) |
[22] |
Guo Z J, Leung A Y T and Yang H X 2011 Appl. Math. Model. 35 3918
doi: 10.1016/j.apm.2011.02.007 |
[23] |
Kumar P, Narayanan S and Gupta S 2016 Probabilist. Eng. Mech. 45 70
doi: 10.1016/j.probengmech.2016.03.003 |
[24] |
Awrejcewicz J and Mrozowski J 1989 J. Sound Vib. 132 89
doi: 10.1016/0022-460X(89)90873-0 |
[25] |
Kimiaeifar A, Saidi A R, Bagheri G H, Rahimpour M and Domairry D G 2009 Chaos, Solitons and Fractals 42 2660
doi: 10.1016/j.chaos.2009.03.145 |
[26] | KyziołJ and Okniński A 2015 Nonlinear Dyn. Syst. Theory 15 25 |
[27] |
Leung A Y T, Yang H X and Zhu P 2014 Commun. Nonlinear Sci. Num. Simul. 19 1142
doi: 10.1016/j.cnsns.2013.08.020 |
[28] |
Matouk A E 2011 Commun. Nonlinear Sci. Num. Simul. 16 975
doi: 10.1016/j.cnsns.2010.04.027 |
[29] |
Al-Shyyab A and Kahraman A 2005 J. Sound Vib. 284 151
doi: 10.1016/j.jsv.2004.06.010 |
[30] |
Masiani R, Capecchi D and Vestroni F 2002 Int. J. Nonlinear Mech. 37 1421
doi: 10.1016/S0020-7462(02)00023-9 |
[31] |
Molla M H U, Razzak M A and Alam M S 2016 Results Phys. 6 238
doi: 10.1016/j.rinp.2016.04.012 |
[1] | Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity[J]. 中国物理B, 2023, 32(3): 30203-030203. |
[2] | Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). A color image encryption algorithm based on hyperchaotic map and DNA mutation[J]. 中国物理B, 2023, 32(3): 30501-030501. |
[3] | Huamei Yang(杨华美) and Yuangen Yao(姚元根). Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system[J]. 中国物理B, 2023, 32(2): 20501-020501. |
[4] | Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication[J]. 中国物理B, 2023, 32(2): 20502-020502. |
[5] | Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability[J]. 中国物理B, 2023, 32(1): 10507-010507. |
[6] | Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Resonance and antiresonance characteristics in linearly delayed Maryland model[J]. 中国物理B, 2022, 31(12): 120502-120502. |
[7] | Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). A novel hyperchaotic map with sine chaotification and discrete memristor[J]. 中国物理B, 2022, 31(12): 120501-120501. |
[8] | Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control[J]. 中国物理B, 2022, 31(10): 100504-100504. |
[9] | Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers[J]. 中国物理B, 2022, 31(10): 100505-100505. |
[10] | Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Exponential sine chaotification model for enhancing chaos and its hardware implementation[J]. 中国物理B, 2022, 31(8): 80508-080508. |
[11] | Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises[J]. 中国物理B, 2022, 31(8): 80502-080502. |
[12] | Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map[J]. 中国物理B, 2022, 31(8): 80504-080504. |
[13] | Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system[J]. 中国物理B, 2022, 31(8): 80507-080507. |
[14] | Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Research and application of stochastic resonance in quad-stable potential system[J]. 中国物理B, 2022, 31(7): 70503-070503. |
[15] | Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system[J]. 中国物理B, 2022, 31(7): 70505-070505. |
|