中国物理B ›› 2017, Vol. 26 ›› Issue (9): 97801-097801.doi: 10.1088/1674-1056/26/9/097801

• CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES • 上一篇    下一篇

Electronic structure and photoluminescence property of a novel white emission phosphor Na3MgZr(PO4)3:Dy3+ for warm white light emitting diodes

Ge Zhu(朱革), Zhuo-Wei Li(李卓为), Chuang Wang(王闯), Fa-Guang Zhou(周发光), Yan Wen(温艳), Shuang-Yu Xin(辛双宇)   

  1. 1 College of New Energy, Bohai University, Jinzhou 121000, China;
    2 School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • 收稿日期:2017-01-19 修回日期:2017-04-17 出版日期:2017-09-05 发布日期:2017-09-05
  • 通讯作者: Shuang-Yu Xin E-mail:xinshuangyu@bhu.edu.cn
  • 基金资助:
    Project supported by the Doctoral Research Fund of Liaoning Province, China (Grant No. 201601351), the National Natural Science Foundation of China (Grant No. 51502142), and the General Program of Natural Science Foundation of the Jiangsu Provincial Higher Education Institutions, China (Grant No. 15KJB430021).

Electronic structure and photoluminescence property of a novel white emission phosphor Na3MgZr(PO4)3:Dy3+ for warm white light emitting diodes

Ge Zhu(朱革)1, Zhuo-Wei Li(李卓为)1, Chuang Wang(王闯)1, Fa-Guang Zhou(周发光)1, Yan Wen(温艳)2, Shuang-Yu Xin(辛双宇)1   

  1. 1 College of New Energy, Bohai University, Jinzhou 121000, China;
    2 School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2017-01-19 Revised:2017-04-17 Online:2017-09-05 Published:2017-09-05
  • Contact: Shuang-Yu Xin E-mail:xinshuangyu@bhu.edu.cn
  • Supported by:
    Project supported by the Doctoral Research Fund of Liaoning Province, China (Grant No. 201601351), the National Natural Science Foundation of China (Grant No. 51502142), and the General Program of Natural Science Foundation of the Jiangsu Provincial Higher Education Institutions, China (Grant No. 15KJB430021).

摘要: To explore suitable single-phase white emission phosphors for warm white light emitting diodes, a series of novel phosphors Na3MgZr(PO4)3:xDy3+ (0≤ x≤ 0.03) is prepared, and their phase purities as well as photoluminescence properties are discussed in depth via x-ray diffraction structure refinement and photoluminescence spectrum measurement. The electronic structure properties of the Na3MgZr(PO4)3 host are calculated. The results reveal that Na3MgZr(PO4)3 possesses a direct band gap with a band gap value of 4.917 eV. The obtained Na3MgZr(PO4)3:Dy3+ phosphors are all well crystallized in trigonal structure with space group R3c, which has strong absorption around 365 nm and can generate warm white light emissions peaking at 487, 576, and 673 nm upon ultraviolet excitation, which are attributed to the transitions from 4F9/2 to 6H15/2, 6H13/2, and 6H11/2 of Dy3+ ions, respectively. The optimal doping content, critical distance, decay time, and Commission International de L'Eclairage (CIE) chromaticity coordinates are investigated in Dy3+ ion-doped Na3MgZr(PO4)3. The thermal quenching analysis shows that Na3MgZr(PO4)3:Dy3+ has a good thermal stability, and the thermal activation energy is calculated. The performances of Na3MgZr(PO4)3:Dy3+ make it a potential single-phase white emission phosphor for warm white light emitting diode.

关键词: optical materials, optical properties, luminescence

Abstract: To explore suitable single-phase white emission phosphors for warm white light emitting diodes, a series of novel phosphors Na3MgZr(PO4)3:xDy3+ (0≤ x≤ 0.03) is prepared, and their phase purities as well as photoluminescence properties are discussed in depth via x-ray diffraction structure refinement and photoluminescence spectrum measurement. The electronic structure properties of the Na3MgZr(PO4)3 host are calculated. The results reveal that Na3MgZr(PO4)3 possesses a direct band gap with a band gap value of 4.917 eV. The obtained Na3MgZr(PO4)3:Dy3+ phosphors are all well crystallized in trigonal structure with space group R3c, which has strong absorption around 365 nm and can generate warm white light emissions peaking at 487, 576, and 673 nm upon ultraviolet excitation, which are attributed to the transitions from 4F9/2 to 6H15/2, 6H13/2, and 6H11/2 of Dy3+ ions, respectively. The optimal doping content, critical distance, decay time, and Commission International de L'Eclairage (CIE) chromaticity coordinates are investigated in Dy3+ ion-doped Na3MgZr(PO4)3. The thermal quenching analysis shows that Na3MgZr(PO4)3:Dy3+ has a good thermal stability, and the thermal activation energy is calculated. The performances of Na3MgZr(PO4)3:Dy3+ make it a potential single-phase white emission phosphor for warm white light emitting diode.

Key words: optical materials, optical properties, luminescence

中图分类号:  (Photoluminescence, properties and materials)

  • 78.55.-m
78.55.Hx (Other solid inorganic materials) 85.60.Jb (Light-emitting devices)