中国物理B ›› 2015, Vol. 24 ›› Issue (8): 88106-088106.doi: 10.1088/1674-1056/24/8/088106
• INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY • 上一篇 下一篇
张亮, 吕程, Tieu Kiet, 赵星, 裴林清, Michal Guillaume
Zhang Liang (张亮), Lü Cheng (吕程), Tieu Kiet, Zhao Xing (赵星), Pei Lin-Qing (裴林清), Michal Guillaume
摘要: Molecular dynamics (MD) simulations are performed to investigate the effects of stress on generalized stacking fault (GSF) energy of three fcc metals (Cu, Al, and Ni). The simulation model is deformed by uniaxial tension or compression in each of [111], [11-2], and [1-10] directions, respectively, before shifting the lattice to calculate the GSF curve. Simulation results show that the values of unstable stacking fault energy (γusf), stable stacking fault energy (γsf), and unstable twin fault energy (γutf) of the three elements can change with the preloaded tensile or compressive stress in different directions. The ratio of γsf/γusf, which is related to the energy barrier for full dislocation nucleation, and the ratio of γutf/γusf, which is related to the energy barrier for twinning formation are plotted each as a function of the preloading stress. The results of this study reveal that the stress state can change the energy barrier of defect nucleation in the crystal lattice, and thereby can play an important role in the deformation mechanism of nanocrystalline material.
中图分类号: (Molecular nanostructures)