[1] |
Pathan M and Buyya R 2008 Content Delivery Networks (Berlin: Springer) pp. 33-77
|
[2] |
Greenberg A, Hamilton J, Maltz A D and Patel P 2008 ACM SIGCOMM CCR 39 68
|
[3] |
Castro M, Druschel P, Hu Y C and Rowstron A 2003 Future Directions in Distributed Computing (Berlin:Springer) pp. 103-107
|
[4] |
Lua E K, Crowcroft J, Pias M, Sharma R and Lim S 2005 IEEE Commun. Surveys Tutorials 7 72
|
[5] |
Awduche D, Chiu A, Elwalid A, Widjaja I and Xiao X 2002 RFC (3272) [2002-05]
|
[6] |
Clark D, Lehr W and Bauer S 2011 TPRC, August 9, 2011, Arlington, VA
|
[7] |
Maslov S, Sneppen K and Zaliznyak A 2004 Physica A 333 529
|
[8] |
Rosato V, Issacharoff L, Meloni S, Caligiore D and Tiriticco F 2008 Physica A 387 1689
|
[9] |
Castellano C and Pastor-Satorras R 2012 Sci. Rep. 2 371
|
[10] |
Boguná M, Papadopoulos F and Krioukov D 2010 Nat. Commun. 1 62
|
[11] |
Boguna M, Krioukov D and Claffy K C 2009 Nat. Phys. 5 74
|
[12] |
Xiao B, Liu L, Guo X and Xu K 2009 Physica A 388 529
|
[13] |
Albert R, Jeong H and Barabási A L 2000 Nature 406 378
|
[14] |
The CAIDA project http://www.caida.org
|
[15] |
Routeviews project http://www.routeviews.org
|
[16] |
Shavitt Y and Shir E ACM SIGCOMM CCR 35 71
|
[17] |
Ager B, Chatzis N, Feldmann A, Sarrar N, Uhlig S and Willinger W 2012 Proceedings of the ACM SIGCOMM (2012 Conference on Applications August 13, 2012, Helsinki) p. 163
|
[18] |
Bollobas B 1998 Random Graphs (New York: Springer) pp. 215-252
|
[19] |
Barabási A L and Albert R 1999 Science 286 509
|
[20] |
Komjáthy J and Simon K 2011 Chaos, Soliton. Fract. 44 651
|
[21] |
Krioukov D, Papadopoulos F, Kitsak M, Vahdat A and BogunáM2010 Phys. Rev. E 82 036106
|
[22] |
Carlson J M and Doyle J 1999 Phys. Rev. E 60 1412
|
[23] |
Lodhi A, Dhamdhere A and Dovrolis C 2012 INFOCOM, 2012 Proceedings IEEE, March 25-30, 2012, Orlando, FL, pp. 1197-1205
|
[24] |
Holme P, Karlin J and Forrest S 2008 ACM SIGCOMM CCR 38 5
|
[25] |
Yakov R, Li T and Hares S 2006 RFC (4271) [2006-01]
|
[26] |
2005 Selecting the Best Path (Juniper Networks)
|
[27] |
2012 BGP Best Path Selection Algorithm: How the Best Path Algorithm Works (Cisco) 13753
|
[28] |
Gill P, Schapira M and Goldberg S 2013 ACM SIGCOMM CCR 44 28
|
[29] |
Huston G 1999 Internet Protocol Journal 2
|
[30] |
Jackson M O 2005 Group Formation in Economics: Networks, Clubs, and Coalitions p. 11
|
[31] |
Gao L and Rexford J 2001 ACMIEEE Trans. Netw. 9 681
|
[32] |
Boguná M and Pastor-Satorras R 2003 Phys. Rev. E 68 036112
|
[33] |
Newman M E 2005 Contemporary Phys. 46 323
|
[34] |
Gugelmann L, Panagiotou K and Peter U 2012 Automata, Languages, and Programming (Berlin: Springer) pp. 573-585
|
[35] |
We omit sibling and backup relationships for simplicity.
|
[36] |
This requirement is fully in line with the Gao-Rexford conditions[31] ensuring BGP stability.
|
[37] |
In YEAS this set represents the clique of tier-1 ASes.
|
[38] |
For reasonable value of N = 40000, R = 17.9, this probability is 0.00135.
|
[39] |
We can assume that the angle coordinate of node v is 0 without loss of generality.
|
[40] |
In case of sparse networks, the conditional distribution of T(r) is Poissonian with mean T(r), P(T(r) = x) = T (r)xe-x/x!. Deconditioning this w.r.t. r results a distribution approximately proportional to x-2, therefore the CCDF of T will be approximately proportional to x-1.
|