中国物理B ›› 2010, Vol. 19 ›› Issue (8): 80309-080309.doi: 10.1088/1674-1056/19/8/080309
宋庆敏, 叶柳
收稿日期:
2009-12-03
修回日期:
2010-01-07
出版日期:
2010-08-15
发布日期:
2010-08-15
基金资助:
Song Qing-Min(宋庆敏)† and Ye Liu(叶柳)
Received:
2009-12-03
Revised:
2010-01-07
Online:
2010-08-15
Published:
2010-08-15
Supported by:
摘要: We propose an experimentally feasible scheme to implement the optimal asymmetric economical 1→3 phase-covariant telecloning protocol, which works without ancilla, based on cavity quantum electrodynamics (QED). The scheme is insensitive to the cavity field states and the cavity decay. In the telecloning process, the cavity is only virtually excited, it greatly prolongs the efficient decoherent time. Therefore, the scheme may be experimentally realized in the field of current cavity QED techniques.
中图分类号: (Quantum communication)
宋庆敏, 叶柳. Scheme to implement optimal asymmetric economical 1→3 phase-covariant telecloning via cavity QED[J]. 中国物理B, 2010, 19(8): 80309-080309.
Song Qing-Min(宋庆敏) and Ye Liu(叶柳). Scheme to implement optimal asymmetric economical 1→3 phase-covariant telecloning via cavity QED[J]. Chin. Phys. B, 2010, 19(8): 80309-080309.
[1] | Wootters W K and Zurek W H 1982 Nature (London) 299 802 |
[2] | Buvzek V and Hillery M 1996 Phys. Rev. A 54 1844 |
[3] | Gisin N and Massar S 1997 Phys. Rev. Lett. 79 2153 |
[4] | Gong S Q, Wang Z Y, Feng X L and Xu Z Z 2000 Chin. Phys. 9 94 |
[5] | Dai J L and Zhang W H 2009 Chin. Phys. B 18 426 |
[6] | Fan H, Imai H, Matsumoto K and Wang X B 2003 Phys. Rev. A 67 022317 |
[7] | Yang R C, Li H C, Lin X, Huang Z P and Xie H 2008 Chin. Phys. B 17 967 |
[8] | Zhang W H, Wu T, Ye L and Dai J L 2007 Phys. Rev. A 75 044303 |
[9] | Zhang W H and Ye L 2007 New J. Phys. 9 318 |
[10] | Cerf N J 2000 Phys. Rev. Lett. 84 4497 |
[11] | Jiang Z, Chen Q and Wan S L 2007 Phys. Rev. A 76 034302 |
[12] | Yu L B, Zhang W H and Ye L 2007 Phys. Rev. A 76 034303 |
[13] | Zhang J F, Rajendran N, Peng X H and Suter D 2007 Phys. Rev. A 76 012317 |
[14] | Niu C S and Griffiths R B 1999 Phys. Rev. A 60 2764 |
[15] | Fiur'avsek J 2003 Phys. Rev. A 67 052314 |
[16] | Du J F, Durt T, Zou P, Li H, Kwek L C, Lai C H, Oh C H and Ekert A 2005 Phys. Rev. Lett. 94 040505 |
[17] | Milman P, Ollivier H and Raimond J M 2003 Phys. Rev. A 67 012314 |
[18] | Zou X B, Pahlke K and Mathis W 2003 Phys. Rev. A 67 024304 |
[19] | Zou X B and Mathis W 2005 Phys. Rev. A 72 024304 |
[20] | Zheng S B 2004 Chin. Phys. Lett. 21 1689 |
[21] | Buscemi F, D'Ariano G M, and Macchiavello C 2005 Phys. Rev. A 71 042327 |
[22] | Durt T, Fiur'avsek J and Cerf N J 2005 Phys. Rev. A 72 052322 |
[23] | Sciarrino F and Martini F D 2007 Phys. Rev. A 76 012330 |
[24] | Zhang W H and Ye L 2006 Phys. Lett. A 354 344 |
[25] | Yu L B, Zhang W H and Ye L 2007 Phys. Rev. A 76 034303 |
[26] | Murao M, Jonathan D, Plenio M B and Vedral V 1999 Phys. Rev. A 59 156 |
[27] | Murao M, Plenio M B and Vedral V 2000 Phys. Rev. A 61 032311 |
[28] | D"ur W and Cirac J I 2000 J. Mod. Opt. 47 247 |
[29] | Ye L and Guo G C 2005 Phys. Rev. A 71 034304 |
[30] | Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392 |
[31] | Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902 |
[32] | Zhang W H, Yu L B and Ye L 2006 Phys. Lett. A 356 195 |
[33] | Zhang W H and Ye L 2007 Phys. Lett. A 369 112 |
[34] | Zheng S B 2001 Phys. Rev. Lett. 87 230404 |
[35] | Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603 |
[36] | Rauschenbeutel A, Bertet P, Osnaghi S, Nogues G, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. A 64 050301(R) |
[37] | Jiang C L, Fang M F and Hu Y H 2008 Chin. Phys. B 17 190 |
[1] | Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Performance analysis of quantum key distribution using polarized coherent-states in free-space channel[J]. 中国物理B, 2023, 32(3): 30306-030306. |
[2] | Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Security of the traditional quantum key distribution protocolswith finite-key lengths[J]. 中国物理B, 2023, 32(3): 30307-030307. |
[3] | Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology[J]. 中国物理B, 2023, 32(2): 20304-020304. |
[4] | Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Novel traveling quantum anonymous voting scheme via GHZ states[J]. 中国物理B, 2023, 32(2): 20303-020303. |
[5] | Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Improving the teleportation of quantum Fisher information under non-Markovian environment[J]. 中国物理B, 2023, 32(1): 10303-010303. |
[6] | Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution[J]. 中国物理B, 2023, 32(1): 10305-010305. |
[7] | Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Measurement-device-independent one-step quantum secure direct communication[J]. 中国物理B, 2022, 31(12): 120303-120303. |
[8] | Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution[J]. 中国物理B, 2022, 31(12): 120304-120304. |
[9] | Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides[J]. 中国物理B, 2022, 31(11): 110301-110301. |
[10] | Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Analysis of atmospheric effects on the continuous variable quantum key distribution[J]. 中国物理B, 2022, 31(11): 110303-110303. |
[11] | Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Measurement-device-independent quantum secret sharing with hyper-encoding[J]. 中国物理B, 2022, 31(10): 100302-100302. |
[12] | Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors[J]. 中国物理B, 2022, 31(9): 90304-090304. |
[13] | Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Probabilistic quantum teleportation of shared quantum secret[J]. 中国物理B, 2022, 31(9): 90303-090303. |
[14] | A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Direct measurement of two-qubit phononic entangled states via optomechanical interactions[J]. 中国物理B, 2022, 31(8): 80307-080307. |
[15] | Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Purification in entanglement distribution with deep quantum neural network[J]. 中国物理B, 2022, 31(8): 80304-080304. |
|