中国物理B ›› 2010, Vol. 19 ›› Issue (12): 123601-123601.doi: 10.1088/1674-1056/19/12/123601
• ATOMIC AND MOLECULAR PHYSICS • 上一篇 下一篇
陈杭, 雷雪玲, 刘立仁, 刘志锋, 祝恒江
收稿日期:
2009-12-31
修回日期:
2010-08-30
出版日期:
2010-12-15
发布日期:
2010-12-15
基金资助:
Chen Hang(陈杭), Lei Xue-Ling(雷雪玲), Liu Li-Ren(刘立仁), Liu Zhi-Feng(刘志锋), and Zhu Heng-Jiang(祝恒江)†
Received:
2009-12-31
Revised:
2010-08-30
Online:
2010-12-15
Published:
2010-12-15
Supported by:
摘要: The lowest-energy structures and the electronic properties of Mo2nNn (n=1–5) clusters have been studied by using the density functional theory (DFT) simulating package DMol3 in the generalized gradient approximation (GGA). The resulting equilibrium geometries show that the lowest-energy structures are dominated by central cores which correspond to the ground states of Mon (n=2, 4, 6, 8, 10) clusters and nitrogen atoms which surround these cores. The average binding energy, the adiabatic electron affinity (AEA), the vertical electron affinity (VEA), the adiabatic ionization potential (AIP) and the vertical ionization potential (VIP) of Mo2nNn (n=1–5) clusters have been estimated. The HOMO–LUMO gaps reveal that the clusters have strong chemical activities. An analysis of Mulliken charge distribution shows that charge-transfer moves from Mo atoms to N atoms and increases with cluster size.
中图分类号: (Density functional theory, local density approximation, gradient and other corrections)
陈杭, 雷雪玲, 刘立仁, 刘志锋, 祝恒江. Structures and electronic properties of Mo2nNn (n=1–5): a density functional study[J]. 中国物理B, 2010, 19(12): 123601-123601.
Chen Hang(陈杭), Lei Xue-Ling(雷雪玲), Liu Li-Ren(刘立仁), Liu Zhi-Feng(刘志锋), and Zhu Heng-Jiang(祝恒江). Structures and electronic properties of Mo2nNn (n=1–5): a density functional study[J]. Chin. Phys. B, 2010, 19(12): 123601-123601.
[1] | Johansson L I 1995 Surf. Sci. Rep. 21 177 |
[2] | Chen J G 1996 Chem. Rev. 96 1477 |
[3] | Toth L E 1971 Transition Metal Carbides and Nitrides (New York: Academic Press Inc.) |
[4] | Ensinger W and Kiuchi U 1996 Surf. Coat. Technol. 84 425 |
[5] | DiSalvo F J and Clarke S J 1996 Curr. Opin. Solid State Mater. Sci. 1 241 |
[6] | Furimsky E 2003 Appl. Catal. A 240 1 |
[7] | Mittasch A and Frankenburg W 1980 Adv. Catal. 2 81 |
[8] | Cai P J, Yang Z H, Wang C Y, Gu Y L and Qian Y T 2005 Chem. Lett. 34 1360 |
[9] | Trawczynski J 2001 Catal. Today 65 343 |
[10] | Li S, Lee J S, Hyeon T and Suslick K S 1999 Appl. Catal. A 184 1 |
[11] | Li S and Lee J S 1998 J. Catal. 173 134 |
[12] | Li S and Lee J S 1998 J. Catal. 178 119 |
[13] | Ozkan U S, Zhang L P and Clark P A 1997 J. Catal. 172 294 |
[14] | Kang X Z and Frey D D 2003 J. Chromatogr. A 991 117 |
[15] | Hao Z X, Wei Z B, Wang L J, Li X H, Li C, Xin Q and Min E Z 2000 Chin J. Catal. 21 217 (in Chinese) |
[16] | Lee J H, Hamrin Jr C E and Davis B H 1992 Catal. Today 15 223 |
[17] | Zhong H X, Zhang H M, Liu G, Liang Y M, Hu J W and Yi B L 2006 Electrochem. Commun. 8 707 |
[18] | Mart'hinez A, Köster A M and Salahun D R 1997 J. Phys. Chem. A 101 1532 |
[19] | Bérces A, Mitchell S A and Zgierski M Z 1998 J. Phys. Chem. A 102 6340 |
[20] | Shim I and Gingerich K A 1999 J. Mol. Struct. (THEOCHEM) 460 123 |
[21] | Liu P and Rodriguez J A 2003 Catal. Lett. 91 247 |
[22] | Ma J H and Du Y H 2008 J. Alloys Compd. 463 196 |
[23] | Shen L H, Cui Q L, Zhang J, Li X F, Zhou Q and Zou G T 2005 Chin. Phys. Lett. 22 3192 |
[24] | Chaudhuri J, Nyakiti L, Lee R, Ma Y, Li P, Cui Q L and Shen H L 2007 Mater. Lett. 61 4763 |
[25] | Bej S K and Thompson L T 2004 Appl. Catal. A 264 141 |
[26] | McGee R C V, Bej S K and Thompson L T 2005 Appl. Catal. A 284 139 |
[27] | Mitchell S A, Lian L, Rayner D M and Hackett P A 1995 J. Chem. Phys. 103 5539 |
[28] | Gajbhiye N S and Ningthoujam R S 2004 Phys. Stat. Sol. C 1 3449 |
[29] | Yao Z W 2009 J. Alloys Compd. 475 L38 |
[30] | Kadono T, Kubota T and Okamoto Y 2003 Catal. Today 87 107 |
[31] | Lightstone J M, Mann H A, Wu M, Johnson P M and White M G 2003 J. Phys. Chem. B 107 10359 |
[32] | Wang J and Han J G 2008 J. Phys. Chem. A 112 3224 |
[33] | Ding C G, Yang J L and Li Q X 2001 Acta Phys. Sin. 50 1907 (in Chinese) |
[34] | Dhilip Kumar T J, Zhou C G, Chen H S, Forrey R C and Balakrishnan N 2008 J. Chem. Phys. 128 124704 |
[35] | Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 |
[36] | Delley B 1990 J. Chem. Phys. 92 508 |
[37] | Jung K Y, Fletcher D A and Steimle T C 1994 J. Mol. Spectrosc. 165 448 |
[38] | Hopkins J B, Langridge-Smith P R R, Morse M D and Smalley R E 1983 J. Chem. Phys. 78 1627 |
[39] | Bates J K and Gruen D M 1979 J. Mol. Spectrosc. 78 284 |
[40] | Huber K and Herzberg G 1979 Molecular Spectra and Molecular Structure v.4 Constants of Diatomic Molecules 2nd edn. (New York: Van Nostrand Reinhold) |
[41] | Morse M D 1986 Chem. Rev. 86 1049 |
[42] | Knickelbein M B 1999 Ann. Rev. Phys. Chem. 50 79 |
[1] | Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability[J]. 中国物理B, 2023, 32(4): 47102-047102. |
[2] | Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F[J]. 中国物理B, 2023, 32(3): 37101-037101. |
[3] | Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal[J]. 中国物理B, 2023, 32(3): 37103-037103. |
[4] | Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride[J]. 中国物理B, 2023, 32(3): 37104-037104. |
[5] | Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice[J]. 中国物理B, 2023, 32(2): 27101-027101. |
[6] | Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics[J]. 中国物理B, 2023, 32(2): 27104-027104. |
[7] | Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Magnetic ground state of plutonium dioxide: DFT+U calculations[J]. 中国物理B, 2023, 32(2): 27103-027103. |
[8] | Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene[J]. 中国物理B, 2022, 31(12): 126101-126101. |
[9] | Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Robust and intrinsic type-III nodal points in a diamond-like lattice[J]. 中国物理B, 2022, 31(11): 117101-117101. |
[10] | Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure[J]. 中国物理B, 2022, 31(10): 107304-107304. |
[11] | Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Advances and challenges in DFT-based energy materials design[J]. 中国物理B, 2022, 31(10): 107105-107105. |
[12] | Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). First-principles study of a new BP2 two-dimensional material[J]. 中国物理B, 2022, 31(8): 86107-086107. |
[13] | Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Adaptive semi-empirical model for non-contact atomic force microscopy[J]. 中国物理B, 2022, 31(8): 88202-088202. |
[14] | Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons[J]. 中国物理B, 2022, 31(8): 87103-087103. |
[15] | Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures[J]. 中国物理B, 2022, 31(6): 67101-067101. |
|