中国物理B ›› 2010, Vol. 19 ›› Issue (11): 117802-118101.doi: 10.1088/1674-1056/19/11/117802
张杰, 刘建党, 陈祥磊, 叶邦角
收稿日期:
2010-01-24
修回日期:
2010-05-11
出版日期:
2010-11-15
发布日期:
2010-11-15
基金资助:
Zhang Jie(张杰)†, Liu Jian-Dang(刘建党),Chen Xiang-Lei(陈祥磊), and Ye Bang-Jiao(叶邦角)
Received:
2010-01-24
Revised:
2010-05-11
Online:
2010-11-15
Published:
2010-11-15
Supported by:
摘要: Many methods are used to calculate the positron lifetime, these methods could be divided into two main types. The first method is atomic superposition approximation method and the second one is the so called energy band calculation method. They are also known as the non-self-consistent field method and self-consistent field method respectively. In this paper, we first introduce the two basic methods and then, we take Si as an example and give our calculation results, these results coincide with our latest experimental results, finally, we discuss the advantages and disadvantages of the two methods.
中图分类号: (Density functional theory, local density approximation, gradient and other corrections)
张杰, 刘建党, 陈祥磊, 叶邦角. Self-consistent field method and non-self-consistent field method for calculating the positron lifetime[J]. 中国物理B, 2010, 19(11): 117802-118101.
Zhang Jie(张杰), Liu Jian-Dang(刘建党),Chen Xiang-Lei(陈祥磊), and Ye Bang-Jiao(叶邦角). Self-consistent field method and non-self-consistent field method for calculating the positron lifetime[J]. Chin. Phys. B, 2010, 19(11): 117802-118101.
[1] | Dannefaer S, Mascher P and Kerr D 1986 Phys. Rev. Lett. 56 2195 |
[2] | Saarinen K, Laine T, Kuisma S, Nissila J, Hautojarvi P, Dobrzynski L, Baranowski J M, Pakula K, Stepniewski R, Wojdak M, Wysmolek A, Suski T, Leszczynski M, Grzegory I and Porowski S 1997 Phys. Rev. Lett 79 3030 |
[3] | Gebauer J, Krause R R, Domke C, Ebert P and Urban K 1997 it Phys. Rev. Lett. 78 3334 |
[4] | Krause R, Saarinen K, Hautojarvi P, Polity A, Gartner G and Corbel C 1990 Phys. Rev. Lett. 65 3329 |
[5] | Puska M J and Nieminen R M 1994 Rev. Mod. Phys. 66 841 |
[6] | Puska M J and Nieminen R M 1983 J. Phys. F: Met. Phys. bf 13 333 |
[7] | Campillo J M, Ogando E and Plazaola F 2007 J. Phys.: Condens. Matter 19 176222 |
[8] | Makkonen I, Hakala M and Puska M J 2006 Phys. Rev. B bf 73 035103 |
[9] | Alatalo M, Barbiellini B, Hakala M, Kauppinen H, Korhonen T, Puska M J, Saarinen K, Hautojarvi P and Nieminen R M 1996 Phys. Rev. B 54 2397 |
[10] | Puska M J, Makinen S, Manninen M and Nieminen R M 1989 it Phys. Rev. B 39 7666 |
[11] | Boev O V, Puska M J and Nieminen R M 1987 Phys. Rev. B 36 7786 |
[12] | Ghosh V J, Alatalo M, Asoka K P, Nielsen B, Lynn K G, Kruseman A C and Mijnarends P E 2000 Phys. Rev. B 61 10092 |
[13] | Kontrym S G, Samsel C M, Biasini M and Kubo Y 2004 Phys. Rev. B 70 125103 |
[14] | Benosman N, Amrane N, Mecabih S and Aourag H 2000 it Mater. Chem. Phys. 61 1727 |
[15] | Amrane N 2009 Mater. Chem. Phys. 114 283 |
[16] | Chen X L, Xi C Y, Ye B J and Weng H M 2007 Acta Phys. Sin. bf56 6695 (in Chinese) |
[17] | Chen X L, Kong W, Weng H M and Ye B J 2008 Acta Phys. Sin. bf57 3271 (in Chinese) |
[18] | Tang Z, Hasegawa M, Nagai Y, Saito M and Kawazoe Y 2002 it Phys. Rev. B 65 045108 |
[19] | Sterne P A and Kaiser J H 1991 Phys. Rev. B 43 13892 |
[20] | Daniuk S, Sob M and Rubaszek A 1991 Phys. Rev. B 43 2580 |
[21] | Rubaszek A, Szotek Z and Temmerman W M 1998 Phys. Rev. B 58 11285 |
[22] | Rubaszek A, Szotek Z and Temmerman W M 2000 Phys. Rev. B 61 10100 |
[23] | Barbiellini B, Puska M J, Torsti T and Nieminen R M 1995 it Phys. Rev. B 11 7341 |
[24] | Puska M J and Corbel C 1988 Phys. Rev. B 38 9874 |
[25] | Hubbard C R, Swanson H E and Mauer F A 1975 J. Appl. Crystallogr. 8 45 |
[26] | Puska M J, Makinen S, Manninen M and Nieminen R M 1989 it Phys. Rev. B 39 7666 |
[1] | Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability[J]. 中国物理B, 2023, 32(4): 47102-047102. |
[2] | Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F[J]. 中国物理B, 2023, 32(3): 37101-037101. |
[3] | Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal[J]. 中国物理B, 2023, 32(3): 37103-037103. |
[4] | Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride[J]. 中国物理B, 2023, 32(3): 37104-037104. |
[5] | Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice[J]. 中国物理B, 2023, 32(2): 27101-027101. |
[6] | Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics[J]. 中国物理B, 2023, 32(2): 27104-027104. |
[7] | Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Magnetic ground state of plutonium dioxide: DFT+U calculations[J]. 中国物理B, 2023, 32(2): 27103-027103. |
[8] | Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene[J]. 中国物理B, 2022, 31(12): 126101-126101. |
[9] | Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Robust and intrinsic type-III nodal points in a diamond-like lattice[J]. 中国物理B, 2022, 31(11): 117101-117101. |
[10] | Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure[J]. 中国物理B, 2022, 31(10): 107304-107304. |
[11] | Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Advances and challenges in DFT-based energy materials design[J]. 中国物理B, 2022, 31(10): 107105-107105. |
[12] | Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). First-principles study of a new BP2 two-dimensional material[J]. 中国物理B, 2022, 31(8): 86107-086107. |
[13] | Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Adaptive semi-empirical model for non-contact atomic force microscopy[J]. 中国物理B, 2022, 31(8): 88202-088202. |
[14] | Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons[J]. 中国物理B, 2022, 31(8): 87103-087103. |
[15] | Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures[J]. 中国物理B, 2022, 31(6): 67101-067101. |
|