中国物理B ›› 2006, Vol. 15 ›› Issue (1): 213-218.doi: 10.1088/1009-1963/15/1/035
雷青松1, 吴志猛1, 奚建平1, 耿新华2, 赵颖2, 孙健2
Lei Qing-Song (雷青松)a, Wu Zhi-Meng (吴志猛)a, Geng Xin-Hua (耿新华)b, Zhao Ying (赵颖)b, Sun Jian (孙健)b, Xi Jian-Ping (奚建平)a
摘要: Highly conductive boron-doped hydrogenated microcrystalline silicon (\mu c-Si:H) films are prepared by very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at the substrate temperatures $T_{\rm S})$ ranging from 90$^\circ$C to 270$^\circ$C. The effects of $T_{\rm S}$ on the growth and properties of the films are investigated. Results indicate that the growth rate, the electrical (dark conductivity, carrier concentration and Hall mobility) and structural (crystallinity and grain size) properties are all strongly dependent on $T_{\rm S}$. As $T_{\rm S}$ increases, it is observed that 1) the growth rate initially increases and then arrives at a maximum value of 13.3 nm/min at $T_{\rm S}$=210$^\circ$C, 2) the crystalline volume fraction ($X_{\rm c})$ and the grain size increase initially, then reach their maximum values at $T_{\rm S}$=140$^\circ$C, and finally decrease, 3) the dark conductivity ($\sigma _{\rm d})$, carrier concentration and Hall mobility have a similar dependence on $T_{\rm S}$ and arrive at their maximum values at $T_{\rm S}$=190$^\circ$C. In addition, it is also observed that at a lower substrate temperature $T_{\rm S}$, a higher dopant concentration is required in order to obtain a maximum $\sigma _{\rm d}$.
中图分类号: (Nucleation and growth)