中国物理B ›› 2024, Vol. 33 ›› Issue (12): 127102-127102.doi: 10.1088/1674-1056/ad8bb2
Xian Du(杜宪)1,†, Yidian Li(李义典)1, Wenxuan Zhao(赵文轩)1, Runzhe Xu(许润哲)1, Kaiyi Zhai(翟恺熠)1, Yulin Chen(陈宇林)2,3,4,‡, and Lexian Yang(杨乐仙)1,5,6,§
Xian Du(杜宪)1,†, Yidian Li(李义典)1, Wenxuan Zhao(赵文轩)1, Runzhe Xu(许润哲)1, Kaiyi Zhai(翟恺熠)1, Yulin Chen(陈宇林)2,3,4,‡, and Lexian Yang(杨乐仙)1,5,6,§
摘要: The dimensionality of quantum materials strongly affects their physical properties. Although many emergent phenomena, such as charge-density wave and Luttinger liquid behavior, are well understood in one-dimensional (1D) systems, the generalization to explore them in higher dimensional systems is still a challenging task. In this study, we aim to bridge this gap by systematically investigating the crystal and electronic structures of molybdenum-oxide family compounds, where the contexture of 1D chains facilitates rich emergent properties. While the quasi-1D chains in these materials share general similarities, such as the motifs made up of MoO$_{{6}}$ octahedrons, they exhibit vast complexity and remarkable tunability. We disassemble the 1D chains in molybdenum oxides with different dimensions and construct effective models to excellently fit their low-energy electronic structures obtained by ab initio calculations. Furthermore, we discuss the implications of such chains on other physical properties of the materials and the practical significance of the effective models. Our work establishes the molybdenum oxides as simple and tunable model systems for studying and manipulating the dimensionality in quantum systems.
中图分类号: (Electron density of states and band structure of crystalline solids)