中国物理B ›› 2024, Vol. 33 ›› Issue (11): 110309-110309.doi: 10.1088/1674-1056/ad73b6
所属专题: SPECIAL TOPIC — Fabrication and manipulation of the second-generation quantum systems
Lei Du(杜磊)1,2, Hao-Ran Tao(陶浩然)1,2, Liang-Liang Guo(郭亮亮)1,2, Hai-Feng Zhang(张海峰)1,2, Yong Chen(陈勇)1,2, Xin Tian(田昕)3, Chi Zhang(张驰)3, Zhi-Long Jia(贾志龙)3, Peng Duan(段鹏)1,2,†, and Guo-Ping Guo(郭国平)1,2,3,‡
Lei Du(杜磊)1,2, Hao-Ran Tao(陶浩然)1,2, Liang-Liang Guo(郭亮亮)1,2, Hai-Feng Zhang(张海峰)1,2, Yong Chen(陈勇)1,2, Xin Tian(田昕)3, Chi Zhang(张驰)3, Zhi-Long Jia(贾志龙)3, Peng Duan(段鹏)1,2,†, and Guo-Ping Guo(郭国平)1,2,3,‡
摘要: Conventional four-probe methods for measuring the resistance of Josephson junctions can damage superconducting thin films, making them unsuitable for frequency measurements of superconducting qubits. In this study, we present a custom probe station measurement system that employs the fritting contact technique to achieve in situ, non-destructive measurements of Josephson junction resistance. Our experimental results demonstrate that this method allows for accurate prediction of qubit frequency with an error margin of 17.2 MHz. Moreover, the fritting contact technique does not significantly affect qubit coherence time or the integrity of the superconducting film, confirming its non-destructive nature. This innovative approach provides a dependable foundation for frequency tuning and addressing frequency collision issues, thus supporting the advancement and practical deployment of superconducting quantum computing.
中图分类号: (Quantum computation architectures and implementations)