中国物理B ›› 2024, Vol. 33 ›› Issue (7): 74209-074209.doi: 10.1088/1674-1056/ad3efb
Yang Li(李阳)1, En-Ming Xu(徐恩明)1, Rui-Jia Chen(陈睿佳)1, Yu-Gang Shee2,‡, and Zu-Xing Zhang(张祖兴)1,†
Yang Li(李阳)1, En-Ming Xu(徐恩明)1, Rui-Jia Chen(陈睿佳)1, Yu-Gang Shee2,‡, and Zu-Xing Zhang(张祖兴)1,†
摘要: A wavelength-interval switchable Brillouin-Raman random fiber laser (BRRFL) based on Brillouin pump (BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity configuration, featuring multiwavelength output with wavelength interval of double Brillouin frequency shifts. Through simultaneously injecting the BP light and its first-order stimulated Brillouin-scattered light into the cavity, the laser output exhibits a wavelength interval of single Brillouin frequency shift. The wavelength-interval switching effect can be manipulated by controlling the power of the first-order stimulated Brillouin scattering light. The experimental results show the multiwavelength output can be switched between double Brillouin frequency shift multiwavelength emission with a broad bandwidth of approximately 60 nm and single Brillouin frequency shift multiwavelength emission of 44 nm. The flexible optically controlled random fiber laser with switchable wavelength interval makes it useful for a wide range of applications and holds significant potential in the field of wavelength-division multiplexing optical communication.
中图分类号: (Resonators, cavities, amplifiers, arrays, and rings)