中国物理B ›› 2023, Vol. 32 ›› Issue (1): 17503-017503.doi: 10.1088/1674-1056/ac5c37
Chunjie Yan(晏春杰)1, Lina Chen(陈丽娜)1,2,†, Kaiyuan Zhou(周恺元)1, Liupeng Yang(杨留鹏)1, Qingwei Fu(付清为)1, Wenqiang Wang(王文强)1, Wen-Cheng Yue(岳文诚)3, Like Liang(梁力克)1, Zui Tao(陶醉)1, Jun Du(杜军)1, Yong-Lei Wang(王永磊)3, and Ronghua Liu(刘荣华)1,‡
Chunjie Yan(晏春杰)1, Lina Chen(陈丽娜)1,2,†, Kaiyuan Zhou(周恺元)1, Liupeng Yang(杨留鹏)1, Qingwei Fu(付清为)1, Wenqiang Wang(王文强)1, Wen-Cheng Yue(岳文诚)3, Like Liang(梁力克)1, Zui Tao(陶醉)1, Jun Du(杜军)1, Yong-Lei Wang(王永磊)3, and Ronghua Liu(刘荣华)1,‡
摘要: We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy (PMA) coefficient, magnetic domain structures, and magnetization dynamics of Pt(5 nm)/[Co($t_{\rm Co}$)/Ni($t_{\rm Ni}$)]$_{5}$/Pt(1 nm) multilayers by combining the four standard magnetic characterization techniques. The magnetic-related hysteresis loops obtained from the field-dependent magnetization $M$ and anomalous Hall resistivity (AHR) $\rho_{{xy}}$ showed that the two serial multilayers with $t_{\rm Co} = 0.2$ nm and 0.3 nm have the optimum PMA coefficient $K_{\rm U}$ as well as the highest coercivity $H_{\rm C}$ at the Ni thickness $t_{\rm Ni}= 0.6 $ nm. Additionally, the magnetic domain structures obtained by magneto-optic Kerr effect (MOKE) microscopy also significantly depend on the thickness and $K_{\rm U}$ of the films. Furthermore, the thickness-dependent linewidth of ferromagnetic resonance is inversely proportional to $K_{\rm U}$ and $H_{\rm C}$, indicating that inhomogeneous magnetic properties dominate the linewidth. However, the intrinsic Gilbert damping constant determined by a linear fitting of the frequency-dependent linewidth does not depend on the Ni thickness and $K_{\rm U}$. Our results could help promote the PMA [Co/Ni] multilayer applications in various spintronic and spin-orbitronic devices.
中图分类号: (Magnetic anisotropy)