中国物理B ›› 2022, Vol. 31 ›› Issue (6): 64305-064305.doi: 10.1088/1674-1056/ac5e98
Hai-Yang Meng(孟海洋)1, Zi-Xiang Xu(徐自翔)1,2, Jing Yang(杨京)1,†, Bin Liang(梁彬)1,2, and Jian-Chun Cheng(程建春)1,2
Hai-Yang Meng(孟海洋)1, Zi-Xiang Xu(徐自翔)1,2, Jing Yang(杨京)1,†, Bin Liang(梁彬)1,2, and Jian-Chun Cheng(程建春)1,2
摘要: Accurate and fast prediction of aerodynamic noise has always been a research hotspot in fluid mechanics and aeroacoustics. The conventional prediction methods based on numerical simulation often demand huge computational resources, which are difficult to balance between accuracy and efficiency. Here, we present a data-driven deep neural network (DNN) method to realize fast aerodynamic noise prediction while maintaining accuracy. The proposed deep learning method can predict the spatial distributions of aerodynamic noise information under different working conditions. Based on the large eddy simulation turbulence model and the Ffowcs Williams-Hawkings acoustic analogy theory, a dataset composed of 1216 samples is established. With reference to the deep learning method, a DNN framework is proposed to map the relationship between spatial coordinates, inlet velocity and overall sound pressure level. The root-mean-square-errors of prediction are below 0.82 dB in the test dataset, and the directivity of aerodynamic noise predicted by the DNN framework are basically consistent with the numerical simulation. This work paves a novel way for fast prediction of aerodynamic noise with high accuracy and has application potential in acoustic field prediction.
中图分类号: (Aeroacoustics and atmospheric sound)