中国物理B ›› 2021, Vol. 30 ›› Issue (7): 70305-070305.doi: 10.1088/1674-1056/abf918
Jin-Bo Yuan(袁金波)1,2,3, Jian Cao(曹健)1,2,†, Kai-Feng Cui(崔凯枫)1,2, Dao-Xin Liu(刘道信)1,2,3, Yi Yuan(袁易)1,2,3, Si-Jia Chao(晁思嘉)1,2, Hua-Lin Shu(舒华林)1,2, and Xue-Ren Huang(黄学人)1,2,‡
Jin-Bo Yuan(袁金波)1,2,3, Jian Cao(曹健)1,2,†, Kai-Feng Cui(崔凯枫)1,2, Dao-Xin Liu(刘道信)1,2,3, Yi Yuan(袁易)1,2,3, Si-Jia Chao(晁思嘉)1,2, Hua-Lin Shu(舒华林)1,2, and Xue-Ren Huang(黄学人)1,2,‡
摘要: A universal locking model for single ion optical clocks was built based on a simple integrator and a double integrator. Different integrator algorithm parameters have been analyzed in both numerical simulations and experiments. The frequency variation measured by the comparison of two optical clocks coincides well with the simulation results for different second integrator parameters. According to the experimental results, the sensitivity of the servo error influenced by laser frequency drift with the addition of a double integrator was suppressed by a factor of 107. In a week-long comparison of optical clocks, the relative uncertainty of the servo error is determined to be 1.9×10-18, which is meaningful for the systematic uncertainty of the transportable single 40Ca+ ion optical clock entering the 10-18 level.
中图分类号: (Quantum algorithms, protocols, and simulations)