中国物理B ›› 2021, Vol. 30 ›› Issue (7): 77801-077801.doi: 10.1088/1674-1056/abf0fb

• • 上一篇    下一篇

Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation

Xiaowei Lu(陆小微)1, Congying Wang(王聪颖)1, Xuanke Zeng(曾选科)1, Jiahe Lin(林家和)1, Yi Cai(蔡懿)1,†, Qinggang Lin(林庆钢)1, Huangcheng Shangguan(上官煌城)1, Zhenkuan Chen(陈振宽)1,2, Shixiang Xu(徐世祥)1, and Jingzhen Li(李景镇)1   

  1. 1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
    2 Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology(Ministry of Education), Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
  • 收稿日期:2021-02-08 修回日期:2021-03-04 接受日期:2021-03-23 出版日期:2021-06-22 发布日期:2021-06-30
  • 通讯作者: Yi Cai E-mail:caiyi@szu.edu.cn
  • 基金资助:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 92050203, 62075138, 61827815, and 61775142) and Shenzhen Fundamental Research Project (Grant Nos. JCYJ20190808164007485, JCYJ20190808121817100, JSGG20191231144201722, and JCYJ20190808115601653).

Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation

Xiaowei Lu(陆小微)1, Congying Wang(王聪颖)1, Xuanke Zeng(曾选科)1, Jiahe Lin(林家和)1, Yi Cai(蔡懿)1,†, Qinggang Lin(林庆钢)1, Huangcheng Shangguan(上官煌城)1, Zhenkuan Chen(陈振宽)1,2, Shixiang Xu(徐世祥)1, and Jingzhen Li(李景镇)1   

  1. 1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
    2 Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology(Ministry of Education), Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
  • Received:2021-02-08 Revised:2021-03-04 Accepted:2021-03-23 Online:2021-06-22 Published:2021-06-30
  • Contact: Yi Cai E-mail:caiyi@szu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 92050203, 62075138, 61827815, and 61775142) and Shenzhen Fundamental Research Project (Grant Nos. JCYJ20190808164007485, JCYJ20190808121817100, JSGG20191231144201722, and JCYJ20190808115601653).

摘要: We propose a kind of spectral polarization-encoding (SPE) for broadband light pulses, which is realized by inducing optical rotatory dispersion (ORD), and decoded by compensating ORD. Combining with polarization-sensitive devices, SPE can not only work to control polarization-dependent transmission for central wavelength or bandwidth-tunable filtering, but also can be used for broadband regenerative or multi-pass amplification with a polarization-dependent gain medium to improve output bandwidth. SPE is entirely passive thus very simple to be designed and aligned. By using an ORD crystal with a good transmission beyond 3-μm mid-infrared region, e.g., AgGaS2, SPE promises to be applied for the wavelength tuning lasers in mid-infrared region, where the tunning devices are rather under developed compared with those in visible and near-infrared region.

关键词: ultrafast optics, optical rotatory dispersion, spectral polarization-encoding, spectral manipulation

Abstract: We propose a kind of spectral polarization-encoding (SPE) for broadband light pulses, which is realized by inducing optical rotatory dispersion (ORD), and decoded by compensating ORD. Combining with polarization-sensitive devices, SPE can not only work to control polarization-dependent transmission for central wavelength or bandwidth-tunable filtering, but also can be used for broadband regenerative or multi-pass amplification with a polarization-dependent gain medium to improve output bandwidth. SPE is entirely passive thus very simple to be designed and aligned. By using an ORD crystal with a good transmission beyond 3-μm mid-infrared region, e.g., AgGaS2, SPE promises to be applied for the wavelength tuning lasers in mid-infrared region, where the tunning devices are rather under developed compared with those in visible and near-infrared region.

Key words: ultrafast optics, optical rotatory dispersion, spectral polarization-encoding, spectral manipulation

中图分类号:  (Ultrafast spectroscopy (<1 psec))

  • 78.47.J-
42.25.Ja (Polarization) 42.79.-e (Optical elements, devices, and systems) 42.60.-v (Laser optical systems: design and operation)