中国物理B ›› 2016, Vol. 25 ›› Issue (10): 108104-108104.doi: 10.1088/1674-1056/25/10/108104
• INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY • 上一篇 下一篇
Yong Jiang(蒋勇), Qiang Zhou(周强), Rong Qiu(邱荣), Xiang Gao(高翔), Hui-Li Wang(王慧丽), Cai-Zhen Yao(姚彩珍), Jun-Bo Wang(王俊波), Xin Zhao(赵鑫), Chun-Ming Liu(刘春明), Xia Xiang(向霞), Xiao-Tao Zu(祖小涛), Xiao-Dong Yuan(袁晓东), Xin-Xiang Miao(苗心向)
Yong Jiang(蒋勇)1,3, Qiang Zhou(周强)1, Rong Qiu(邱荣)1, Xiang Gao(高翔)1, Hui-Li Wang(王慧丽)1, Cai-Zhen Yao(姚彩珍)2, Jun-Bo Wang(王俊波)1, Xin Zhao(赵鑫)1, Chun-Ming Liu(刘春明)3, Xia Xiang(向霞)3, Xiao-Tao Zu(祖小涛)3, Xiao-Dong Yuan(袁晓东)2, Xin-Xiang Miao(苗心向)2
摘要: The ablation debris and raised rim, as well as residual stress and deep crater will be formed during the mitigation of damage site with a CO2 laser irradiation on fused silica surface, which greatly affects the laser damage resistance of optics. In this study, the experimental study combined with numerical simulation is utilized to investigate the effect of the secondary treatment on a mitigated site by CO2 laser irradiation. The results indicate that the ablation debris and the raised rim can be completely eliminated and the depth of crater can be reduced. Notable results show that the residual stress of the mitigation site after treatment will reduce two-thirds of the original stress. Finally, the elimination and the controlling mechanism of secondary treatment on the debris and raised rim, as well as the reasons for changing the profile and stress are analyzed. The results can provide a reference for the optimization treatment of mitigation sites by CO2 laser secondary treatment.
中图分类号: (Radiation treatment)