中国物理B ›› 2011, Vol. 20 ›› Issue (9): 90505-090505.doi: 10.1088/1674-1056/20/9/090505
Mohammad Pourmahmood Aghababa
收稿日期:
2011-03-30
修回日期:
2011-04-28
出版日期:
2011-09-15
发布日期:
2011-09-15
Mohammad Pourmahmood Aghababa†
Received:
2011-03-30
Revised:
2011-04-28
Online:
2011-09-15
Published:
2011-09-15
摘要: In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller.
中图分类号: (Nonlinear dynamics and chaos)
Mohammad Pourmahmood Aghababa. A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs[J]. 中国物理B, 2011, 20(9): 90505-090505.
Mohammad Pourmahmood Aghababa . A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs[J]. Chin. Phys. B, 2011, 20(9): 90505-090505.
[1] | Chen G and Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific) |
[2] | Pourmahmood M, Khanmohammadi S and Alizadeh G 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 2853 |
[3] | Aghababa M P, Khanmohammadi S and Alizadeh G 2011 Appl. Math. Model. 35 3080 |
[4] | Lü L, Li G , Guo L, Meng L, Zou J R and Yang M 2010 Chin. Phys. B 19 080507 |
[5] | Liu Y Z, Jiang C S, Lin C S and Jiang Y M 2007 Chin. Phys. 16 660 |
[6] | Wang B and Wen G 2007 Phys. Lett. A 370 35 |
[7] | Li G H, Zhou S P and Xu D M 2004 Chin. Phys. 13 168 |
[8] | Chen F X and Zhang W D 2007 Chin. Phys. 16 937 |
[9] | Zhang X Y, Guan X P and Li H G 2005 Chin. Phys. 14 279 |
[10] | Hu J and Zhang Q J 2008 Chin. Phys. B 17 503 |
[11] | Yu W, Chen G and Lü J 2009 Automatica 45 429 |
[12] | Yu W, Cao J, Chen G, Lü J, Han J and Wei W 2009 IEEE Trans. Syst., Man Cyber. 39 230 |
[13] | Yu W, Cao J and Lü J 2008 SIAM J. Appl. Dyn. Syst. 7 108 |
[14] | Zhou J, Lu J and Lü J 2008 Automatica 44 996 |
[15] | Zhang Q, Lu J, Lü J and Tse C K 2008 IEEE Trans. Circuit. Syst. 55 183 |
[16] | Zhou J, Lu J and Lü J 2006 IEEE Trans. Automatic Control 51 652 |
[17] | Lü J and Chen G 2005 IEEE Trans. Automatic Control 50 841 |
[18] | Chen H K 2002 J. Sound Vibr. 255 719 |
[19] | van Dooren R 2003 J. Sound Vibr. 268 632 |
[20] | Ge Z M and Chen H K 1996 J. Sound Vibr. 194 107 |
[21] | Tong X and Mrad N 2001 J. Appl. Mech. Trans. Amer. Soc. Mech. Eng. 68 681 |
[22] | Chen H K and Lin T N 2003 Proc. Inst. of Mech. Eng. Part C: J. Mech. Eng. Sci. 217 331 |
[23] | Zhou D, Shen T and Tamura K 2006 ASME J. Dynamic. Syst. Measur. Control. 128 592 |
[24] | Lei Y, Xu W and Zheng H 2005 Phys. Lett. A 343 153 |
[25] | Yau H 2007 Chaos Soliton. Fract. 34 1357 |
[26] | Yau H 2008 Chaos Mech. Syst. Signal. Process 22 408 |
[27] | Salarieh H and Alasty A 2008 J. Sound Vibr. 313 760 |
[28] | Yan J J, Hung M L and Liao T L 2006 J. Sound Vibr. 298 298 |
[29] | Hung M, Yan J and Liao T 2008 Chaos Soliton. Fract. 35 181 |
[30] | Bhat S P and Bernstein D S 2000 SIAM J. Control Optimiz. 38 751 |
[31] | Yau H and Yan J J 2008 Appl. Math. Comput. 197 775 |
[32] | Slotine J and Li W 1991 Applied Nonlinear Control (New Jersey: Prentice Hall) |
[33] | Lü J, Han F, Yu X and Chen G 2004 Automatica 40 1677 |
[34] | Lü J, Chen G, Yu X and Leung H 2004 IEEE Trans. Circuit. Syst. 51 2476 |
[35] | Yu S, Lü J, Leung H and Chen G 2005 IEEE Trans. Circuit. Syst. 52 1459 |
[36] | Lü J and Chen G 2006 Int. J. Bifurcat. Chaos 16 775 |
[37] | Lü J, Yu S, Leung H and Chen G 2006 IEEE Trans. Circuit. Syst. 53 149 |
[38] | Yu S, Lü J and Chen G 2007 IEEE Trans. Circuit. Syst. 54 2087 |
[1] | Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity[J]. 中国物理B, 2023, 32(3): 30203-030203. |
[2] | Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). A color image encryption algorithm based on hyperchaotic map and DNA mutation[J]. 中国物理B, 2023, 32(3): 30501-030501. |
[3] | Huamei Yang(杨华美) and Yuangen Yao(姚元根). Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system[J]. 中国物理B, 2023, 32(2): 20501-020501. |
[4] | Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication[J]. 中国物理B, 2023, 32(2): 20502-020502. |
[5] | Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability[J]. 中国物理B, 2023, 32(1): 10507-010507. |
[6] | Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Resonance and antiresonance characteristics in linearly delayed Maryland model[J]. 中国物理B, 2022, 31(12): 120502-120502. |
[7] | Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). A novel hyperchaotic map with sine chaotification and discrete memristor[J]. 中国物理B, 2022, 31(12): 120501-120501. |
[8] | Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control[J]. 中国物理B, 2022, 31(10): 100504-100504. |
[9] | Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers[J]. 中国物理B, 2022, 31(10): 100505-100505. |
[10] | Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Exponential sine chaotification model for enhancing chaos and its hardware implementation[J]. 中国物理B, 2022, 31(8): 80508-080508. |
[11] | Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises[J]. 中国物理B, 2022, 31(8): 80502-080502. |
[12] | Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map[J]. 中国物理B, 2022, 31(8): 80504-080504. |
[13] | Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system[J]. 中国物理B, 2022, 31(8): 80507-080507. |
[14] | Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Research and application of stochastic resonance in quad-stable potential system[J]. 中国物理B, 2022, 31(7): 70503-070503. |
[15] | Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system[J]. 中国物理B, 2022, 31(7): 70505-070505. |
|