中国物理B ›› 2011, Vol. 20 ›› Issue (11): 110503-110503.doi: 10.1088/1674-1056/20/11/110503
谢玲玲, 高加振, 谢伟苗, 高继华
收稿日期:
2011-04-11
修回日期:
2011-06-24
出版日期:
2011-11-15
发布日期:
2011-11-15
Xie Ling-Ling (谢玲玲), Gao Jia-Zhen (高加振),Xie Wei-Miao (谢伟苗), and Gao Ji-Hua (高继华)†
Received:
2011-04-11
Revised:
2011-06-24
Online:
2011-11-15
Published:
2011-11-15
摘要: The wave propagation in the one-dimensional complex Ginzburg-Landau equation (CGLE) is studied by considering a wave source at the system boundary. A special propagation region, which is an island-shaped zone surrounded by the defect turbulence in the system parameter space, is observed in our numerical experiment. The wave signal spreads in the whole space with a novel amplitude wave pattern in the area. The relevant factors of the pattern formation, such as the wave speed, the maximum propagating distance and the oscillatory frequency, are studied in detail. The stability and the generality of the region are testified by adopting various initial conditions. This finding of the amplitude pattern extends the wave propagation region in the parameter space and presents a new signal transmission mode, and is therefore expected to be of much importance.
中图分类号: (Nonlinear dynamics and chaos)
谢玲玲, 高加振, 谢伟苗, 高继华. Amplitude wave in one-dimensional complex Ginzburg–Landau equation[J]. 中国物理B, 2011, 20(11): 110503-110503.
Xie Ling-Ling (谢玲玲), Gao Jia-Zhen (高加振),Xie Wei-Miao (谢伟苗), and Gao Ji-Hua (高继华) . Amplitude wave in one-dimensional complex Ginzburg–Landau equation[J]. Chin. Phys. B, 2011, 20(11): 110503-110503.
[1] | Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (New York: Springer) |
[2] | Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851 |
[3] | Chate H 1994 Nonlinearity 7 185 |
[4] | Aranson I S and Kramer L 2002 Rev. Mod. Phys. 74 99 |
[5] | Goryachev A and Kapral R 1996 Phys. Rev. E 54 5469 |
[6] | Brunnet L G and Chate H 1998 Physica A 257 347 |
[7] | Zhan M and Kapral R 2006 Phys. Rev. E 73 026224 |
[8] | Bar M and Eiswirth M 1993 Phys. Rev. E 48 R1635 |
[9] | Barkley D, Kness M and Tuckerman L S 1990 Phys. Rev. A 42 2489 |
[10] | Mikhailov A S and Showalter K 2006 Phys. Rep. 425 79 |
[11] | Yang R, Xie Y J, Wang Y Y and Fu H Z 2008 Acta Phys. Sin. 57 5513 (in Chinese) |
[12] | Ding W S, Xi L and Liu L H 2008 Acta Phys. Sin. 57 7705 (in Chinese) |
[13] | Lü Y P, Gu G F, Lu H C, Dai Y and Tang G N 2009 Acta Phys. Sin. 58 7573 (in Chinese) |
[14] | Lü Y P, Gu G F, Lu H C, Dai Y and Tang G N 2009 Acta Phys. Sin. 58 2996 (in Chinese) |
[15] | Li W, Liu S B and Yang W 2010 Chin. Phys. B 19 030307 |
[16] | Zamir B and Ali R 2011 Chin. Phys. B 20 014102 |
[17] | Brusch L, Zimmermann M G, van Hecke M, Bar M and Torcini A 2000 Phys. Rev. Lett. 85 86 |
[18] | Brusch L, Torcini A, van Hecke M, Zimmermann M G and Bar M 2001 Physica D 160 127 |
[19] | Brusch L, Torcini A and Bar M 2003 Physica D 174 152 |
[20] | Lan Y, Garnier N and Cvitanovic P 2004 Physica D 188 193 |
[21] | Choudhury S R 2005 Math. Comput. Simulat. 69 243 |
[22] | Ipsen M, Kramer L and Srensen P G 2000 Phys. Rep. 337 193 |
[23] | Boccaletti S, Grebogi C, Lai Y C, Mancini H and Maza D 2000 Phys. Rep. 329 103 |
[24] | Gao J H and Zheng Z G 2007 Chin. Phys. Lett. 24 359 |
[25] | Gao J H and Peng J H 2007 Chin. Phys. Lett. 24 1614 |
[26] | Gao J H, Xie L L, Zou W and Zhan M 2009 Phys. Rev. E 79 056214 |
[27] | Gao J H, Xie L L and Peng J H 2009 Acta Phys. Sin. 58 5218 (in Chinese) |
[28] | Xie L L and Gao J H 2010 Chin. Phys. B 19 060516 |
[29] | Zhan M, Zou W and Liu X 2010 Phys. Rev. E 81 036211 |
[30] | Shraiman B I, Pumir A, van Saarloos W, Hohenberg P C, Chate H and Holen M 1992 Physica D 57 241 |
[31] | Aranson I, Levine H and Tsimring L 1994 Phys. Rev. Lett. 72 2561 |
[32] | Ipsen M and van Hecke M 2001 Physica D 160 103 |
[33] | Gao J H, Xie L L, Nie H C and Zhan M 2010 Chaos 20 043132 |
[1] | Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity[J]. 中国物理B, 2023, 32(3): 30203-030203. |
[2] | Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). A color image encryption algorithm based on hyperchaotic map and DNA mutation[J]. 中国物理B, 2023, 32(3): 30501-030501. |
[3] | Huamei Yang(杨华美) and Yuangen Yao(姚元根). Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system[J]. 中国物理B, 2023, 32(2): 20501-020501. |
[4] | Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication[J]. 中国物理B, 2023, 32(2): 20502-020502. |
[5] | Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability[J]. 中国物理B, 2023, 32(1): 10507-010507. |
[6] | Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Resonance and antiresonance characteristics in linearly delayed Maryland model[J]. 中国物理B, 2022, 31(12): 120502-120502. |
[7] | Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). A novel hyperchaotic map with sine chaotification and discrete memristor[J]. 中国物理B, 2022, 31(12): 120501-120501. |
[8] | Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control[J]. 中国物理B, 2022, 31(10): 100504-100504. |
[9] | Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers[J]. 中国物理B, 2022, 31(10): 100505-100505. |
[10] | Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Exponential sine chaotification model for enhancing chaos and its hardware implementation[J]. 中国物理B, 2022, 31(8): 80508-080508. |
[11] | Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises[J]. 中国物理B, 2022, 31(8): 80502-080502. |
[12] | Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map[J]. 中国物理B, 2022, 31(8): 80504-080504. |
[13] | Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system[J]. 中国物理B, 2022, 31(8): 80507-080507. |
[14] | Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Research and application of stochastic resonance in quad-stable potential system[J]. 中国物理B, 2022, 31(7): 70503-070503. |
[15] | Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system[J]. 中国物理B, 2022, 31(7): 70505-070505. |
|