中国物理B ›› 2011, Vol. 20 ›› Issue (11): 110306-110306.doi: 10.1088/1674-1056/20/11/110306
王晓霞, 张建奇, 於亚飞, 张智明
收稿日期:
2011-04-04
修回日期:
2011-06-30
出版日期:
2011-11-15
发布日期:
2011-11-15
基金资助:
Wang Xiao-Xia(王晓霞), Zhang Jian-Qi(张建奇), Yu Ya-Fei(於亚飞)†, and Zhang Zhi-Ming(张智明)‡
Received:
2011-04-04
Revised:
2011-06-30
Online:
2011-11-15
Published:
2011-11-15
Supported by:
摘要: We propose a scheme for realizing two-qubit controlled phase gates on two nonidentical quantum dots trapped in separate cavities. In our scheme, each dot simultaneously interacts with one highly detuned cavity mode and two strong driven classical fields. During the gate operation, the quantum dots undergo no transition, while the system can acquire different phases conditional on different states of the quantum dots. With the application of the single-qubit operations, two-qubit controlled phase gates can be realized.
中图分类号: (Quantum computation architectures and implementations)
王晓霞, 张建奇, 於亚飞, 张智明. Controlled phase gates based on two nonidentical quantum dots trapped in separate cavities[J]. 中国物理B, 2011, 20(11): 110306-110306.
Wang Xiao-Xia(王晓霞), Zhang Jian-Qi(张建奇), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明) . Controlled phase gates based on two nonidentical quantum dots trapped in separate cavities[J]. Chin. Phys. B, 2011, 20(11): 110306-110306.
[1] | Englund D, Faraon A, Fushman I, Ellis B and Vučković J 2009 (1st edn.) Single Semiconductor Quantum Dots (Berlin: Springer) pp. 299–329 |
[2] | Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221 |
[3] | Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902 |
[4] | Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y and Vukovi J 2005 Phys. Rev. Lett. 95 013904 |
[5] | Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200 |
[6] | Kimble H J 2008 Nature 453 1023 |
[7] | Shao X Q, Chen L and Zhang S 2009 Chin. Phys. B 18 440 |
[8] | Tang S Q, Zhang D Y, Xie L J, Zhan X G and Gao F 2009 Chin. Phys. B 18 56 |
[9] | Monroe C, Meekhof D M, King B E, Itano W M and Wineland D J 1995 Phys. Rev. Lett. 75 4714 |
[10] | Chiaverini J, Leibfried D, Schaetz T, Barrett M D, Blakestad R B, Britton J, Itano W M, Jost J D, Knill E, Langer C, Ozeri R and Wineland D J 2005 Nature 432 602 |
[11] | Liu W Y, Bi S W and Dou X B 2010 Acta Phys. Sin. 59 1780 (in Chinese) |
[12] | Xu Y Y, Zhou F, Zhang X L and Feng M 2010 Chin. Phys. B 19 090317 |
[13] | Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204 |
[14] | Turchette Q, Hood C, Lange W, Mabuchi H and Kimble H J 1995 Phys. Rev. Lett. 75 4710 |
[15] | Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87 |
[16] | Nogues G, Rauschenbeutel A, Osnaghi S, Brune M, Raimond J M and Haroche S 1999 Nature 400 239 |
[17] | Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y and Vukovi J 2005 Phys. Rev. Lett. 95 013904 |
[18] | Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200 |
[19] | Hennessy K, Badolato A, Winger M, Gerace D, Atature M, Gulde S, Falt S, Hu E L and Imamoglu A 2007 Nature 445 896 |
[20] | Imamoğlu A, Falt S, Dreiser J, Fernandez G, Atature M, Hennessy K, Badolato A and Gerace D 2007 J. Appl. Phys. 101 081602 |
[21] | Petta J R , Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180 |
[22] | Nazir A, Lovett B W, Andrew G and Briggs D 2004 Phys. Rev. A 70 052301 |
[23] | Zhang J Q, Yu Y F and Zhang Z M 2010 Phys. Rev. A 374 3818 |
[24] | Kim H, Thon S M, Petroff P M and Bouwmeester D 2009 Appl. Phys. Lett. 95 243107 |
[25] | Craig N J, Taylor J M, Lester E A, Marcus C M, Hanson M P and Gossard A C 2004 Science 304 565 |
[26] | Xu X, Wu Y, Sun B, Huang Q, Cheng J, Steel D G, Bracker A S, Gammon D, Emary C and Sham L J 2007 Phys. Rev. Lett. 99 097401 |
[27] | Feng X L, Wu C F, Sun H and Oh C H 2009 Phys. Rev. Lett. 103 200501 |
[28] | James D F V and Jerke J 2007 Can. J. Phys. 85 325 |
[29] | Guzman R, Retamal J C, Solano E and Zagury N 2006 Phys. Rev. Lett. 96 010502 |
[30] | Zhang J Q, Yu Y F and Zhang Z M 2011 arXiv:1104.2456v1 |
[31] | Zhang J Q, Yu Y F, Feng X L and Zhang Z M 2011 arXiv:1012.0928v3 |
[32] | Yao P and Hughes S 2009 Opt. Express 17 11505 |
[33] | Laucht A, Neumann A, Villas-Boas J M, Bichler M, Amann M C and Finley J J 2008 Phys. Rev. B 77 161303 |
[34] | Atature M, Dreiser J, Badolato A, Hogele Al, Karrai K and Mamoglu A I 2006 Science 312 551 |
[1] | Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Lorentz quantum computer[J]. 中国物理B, 2023, 32(4): 40304-040304. |
[2] | Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). High-fidelity universal quantum gates for hybrid systems via the practical photon scattering[J]. 中国物理B, 2023, 32(3): 30303-030303. |
[3] | Rui Li(李睿) and Hang Zhang(张航). Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects[J]. 中国物理B, 2023, 32(3): 30308-030308. |
[4] | Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Realization of the iSWAP-like gate among the superconducting qutrits[J]. 中国物理B, 2023, 32(2): 20306-020306. |
[5] | Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Variational quantum simulation of thermal statistical states on a superconducting quantum processer[J]. 中国物理B, 2023, 32(1): 10307-010307. |
[6] | Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots[J]. 中国物理B, 2022, 31(12): 120302-120302. |
[7] | Ke He(何珂). Molecular beam epitaxy growth of quantum devices[J]. 中国物理B, 2022, 31(12): 126804-126804. |
[8] | Kai Xu(许凯), and Heng Fan(范桁). Quantum simulation and quantum computation of noisy-intermediate scale[J]. 中国物理B, 2022, 31(10): 100304-100304. |
[9] | Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Quantum algorithm for neighborhood preserving embedding[J]. 中国物理B, 2022, 31(6): 60304-060304. |
[10] | Min Xiao(肖敏) and Yannan Zhang(张艳南). Analysis and improvement of verifiable blind quantum computation[J]. 中国物理B, 2022, 31(5): 50305-050305. |
[11] | Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Quantum watermarking based on threshold segmentation using quantum informational entropy[J]. 中国物理B, 2022, 31(4): 40302-040302. |
[12] | Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics[J]. 中国物理B, 2022, 31(4): 43102-043102. |
[13] | Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Quantum partial least squares regression algorithm for multiple correlation problem[J]. 中国物理B, 2022, 31(3): 30304-030304. |
[14] | Ya-Ping He(何亚平), Deng-Ke Qu(曲登科), Lei Xiao(肖磊), Kun-Kun Wang(王坤坤), and Xiang Zhan(詹翔). Optical scheme to demonstrate state-independent quantum contextuality[J]. 中国物理B, 2022, 31(3): 30305-030305. |
[15] | Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Measuring Loschmidt echo via Floquet engineering in superconducting circuits[J]. 中国物理B, 2022, 31(3): 30307-030307. |
|