中国物理B ›› 2010, Vol. 19 ›› Issue (3): 30511-030511.doi: 10.1088/1674-1056/19/3/030511
任海鹏, 李文超, 刘 丁
收稿日期:
2008-09-02
修回日期:
2009-08-30
出版日期:
2010-03-15
发布日期:
2010-03-15
基金资助:
Ren Hai-Peng(任海鹏), Li Wen-Chao(李文超), and Liu Ding(刘丁)
Received:
2008-09-02
Revised:
2009-08-30
Online:
2010-03-15
Published:
2010-03-15
Supported by:
摘要: Direct time delay feedback can make non-chaotic Chen circuit chaotic. The chaotic Chen circuit with direct time delay feedback possesses rich and complex dynamical behaviours. To reach a deep and clear understanding of the dynamics of such circuits described by delay differential equations, Hopf bifurcation in the circuit is analysed using the Hopf bifurcation theory and the central manifold theorem in this paper. Bifurcation points and bifurcation directions are derived in detail, which prove to be consistent with the previous bifurcation diagram. Numerical simulations and experimental results are given to verify the theoretical analysis. Hopf bifurcation analysis can explain and predict the periodical orbit (oscillation) in Chen circuit with direct time delay feedback. Bifurcation boundaries are derived using the Hopf bifurcation analysis, which will be helpful for determining the parameters in the stabilisation of the originally chaotic circuit.
中图分类号: (Numerical simulations of chaotic systems)
任海鹏, 李文超, 刘 丁. Hopf bifurcation analysis of Chen circuit with direct time delay feedback[J]. 中国物理B, 2010, 19(3): 30511-030511.
Ren Hai-Peng(任海鹏), Li Wen-Chao(李文超), and Liu Ding(刘丁). Hopf bifurcation analysis of Chen circuit with direct time delay feedback[J]. Chin. Phys. B, 2010, 19(3): 30511-030511.
[1] | Lorenz E N 1963 J. Atmos. Sci. 20 130 |
[2] | Stwart I 2000 Nature 406 948 |
[3] | R?ssler O E 1976 Phys. Lett. A 57 397 |
[4] | Chua L O, Wu C W, Huang A S and Zhong G Q 1993 IEEE Trans. on CAS I 40 732 |
[5] | Chua L O, Wu C W, Huang A S and Zhong G Q 1993 IEEE Trans. on CAS I 40 745 |
[6] | Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465 |
[7] | Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196 |
[8] | Chen G and Dong X 1992 Int. J. Bifur. Chaos 2 407 |
[9] | Pyragas K 1992 Phys. Lett. A 170421 |
[10] | Ren H P and Liu D 2002 Acta Phys. Sin. 51 982 (in Chinese) |
[11] | Gao X and Yu J B 2005 Chin. Phys. 14 908 |
[12] | Huijberts H 2006 IEEE Trans. on CAS I 53 2246 |
[13] | Ren H P and Liu D 2006 IEEE Trans. on CAS II 51 55 |
[14] | Sakamoto N 2006 Phys. Lett. A 365 316 |
[15] | Yan L, Zou J and Chen Z G 2006 Int. J. Bifur. Chaos 16 1089 |
[16] | Zhan L and Wang D S 2007 Acta Phys. Sin. 56 91 (in Chinese) |
[17] | Zhu C and Chen Z 2008 Phys. Lett. A 372 4033 |
[18] | Chen G and Lai D 1998 Int. J. Bifur. Chaos 8 1585 |
[19] | Wang X F and Chen G 1999 Int. J. Bifur. Chaos 9 1435 |
[20] | Wang X F, Chen G and Yu X 2000 Chaos 10 771 |
[21] | Tang K S, Man K F, Zhong G Q and Chen G 2000 IEEE Trans. on IEEE Trans. on CAS I 48 636 |
[22] | Lü J H, Zhou T S, Chen G and Yang X 2002 Chaos 12 344 |
[23] | Lü J, Yu X and Chen G 2003 IEEE Trans. on CAS I 50 198 |
[24] | Ren H P and Liu D 2003 Control Theory and Applications 20 768 (in Chinese) |
[25] | Ge Z M, Cheng J W and Chen Y S 2004 Chaos, Solitons and Fractals 22 1165 |
[26] | Morel C, Bourcerie M and Francois C B 2005 Chaos, Solitons and Fractals 26 541 |
[27] | Yu S, Lü J, Leung H and Chen G 2005 IEEE Trans. on CAS I 52 1459 |
[28] | Lü J, Yu S, Leung H and Chen G 2006 IEEE Trans. on CAS I 53 149 |
[29] | Ren H P, Liu D and Han C 2006 Acta Phys. Sin. 55 2694 (in Chinese) |
[30] | Wu X, Lu J, Herbert H C Iu and Wong S C 2007 Chaos, Solitons and Fractals 31 811 |
[31] | Soong C Y and Huang W T 2007 Phys. Rev. E 75 036206 |
[32] | Ruiz P, Gutiérrez J M and Güémez J 2008 Chaos, Solitons and Fractals 36 635 |
[33] | Billini A, Rovatti R, Setti G and Tassoni C 2001 Proc. IEEE IECON 1 1527 |
[34] | Abel and Schwarz W 2002 Proc. IEEE 90 691 |
[35] | Chau K T, Ye S, Gao Y and Chen J H 2004 Proc. IEEE IAS 4 1874 |
[36] | Zhang Z and Chen G 2005 In Proceeding of European Conference on Circuits Theory and Design p225 |
[37] | Ottino J M, Muzzio F J, Tjahjadi M, Franjione J G, Jana S C and Kusch H A1992 Science 257 754 |
[38] | Pareek N K, Patidar V, Patidar V and Sud K K 2003 Phys.Lett. A 309 75 |
[39] | Wu X, Hu H and Zhang B 2004 Chaos, Solitons and Fractals 22 367 |
[40] | Shunji I and Narikiyo J 1998 Journal of the Japan Society for PrecisionEngineering 64 748 |
[41] | Long Y, Yang C and Wang C L 2000 Engineering Science of China 2 76 |
[42] | Wang Z and Chau K T 2008 Chaos, Solitons and Fractals 36 694 |
[43] | Flores B C, Solis E A and Thomas G 2003 IEE Proc.-Radar Sonar Navig 150 313 |
[44] | Vijayaraghavan V and Henry L 2005 IEEE Signal Processing Letters 12 528 |
[45] | Aihara K 2002 Proc. IEEE 90 919 |
[46] | Horio Y, Taniguchi T and Aihara K 2005 Neurocomputing 64 447 |
[47] | Ueta T and Chen G 2000 Int. J. Bifurc. Chaos 10 1917 |
[48] | Li T, Chen G and Tang Y 2004 Chaos, Solitons and Fractals 19 1269 |
[49] | Lü J and Chen G 2002 Int. J. Bifurc. Chaos 12 659 |
[50] | Lü J and Chen G 2002 Int. J. Bifurc. Chaos 12 1001 |
[51] | Liu C, Liu T, Liu L and Liu K 2004 Chaos, Solitons and Fractals 22 1031 |
[52] | Zhou W, Xu Y, Lu H and Pan L 2008 Phys. Lett. A372 5773 |
[53] | Wu W, Chen Z Q and Yuan Z Z 2008 Chin. Phys. B17 2420 |
[54] | Han F, Wang Y, Yu X and Feng Y 2004 Chaos, Solitons and Fractals 21 69 |
[55] | Zhou X, Wu Y, Li Y and Wei Z 2008 Chaos, Solitons and Fractals 36 1385 |
[56] | Fallahi K, Raoufi R and Khoshbin H 2008 Communicationsin Nonlinear Science and Numerical Simulation 13 763 |
[57] | Sprott J C 2007 Phys. Lett. A 366 397 |
[58] | Rosenstein M T, Collins J J and Luca C J D 1993 Physica D 65 117 |
[59] | Balanov A G, Janson N B and Sch?ll E 2005 Phys. Rev. E 71 016222 |
[60] | Hassard B, Kazarinoff N and Wan Y 1981 Theory and Application of Hopf Bifurcation (Cambridge: Cambridge UniversityPress) p23 |
[61] | Song Y L and Wei J J 2004 Chaos, Solitons and Fractals 22 75 |
[1] | Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity[J]. 中国物理B, 2023, 32(3): 30203-030203. |
[2] | Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays[J]. 中国物理B, 2023, 32(3): 38701-038701. |
[3] | Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Data encryption based on a 9D complex chaotic system with quaternion for smart grid[J]. 中国物理B, 2023, 32(1): 10502-010502. |
[4] | Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse[J]. 中国物理B, 2023, 32(1): 10503-010503. |
[5] | Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). A novel hyperchaotic map with sine chaotification and discrete memristor[J]. 中国物理B, 2022, 31(12): 120501-120501. |
[6] | Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor[J]. 中国物理B, 2022, 31(10): 100503-100503. |
[7] | Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers[J]. 中国物理B, 2022, 31(10): 100505-100505. |
[8] | Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Evolution of donations on scale-free networks during a COVID-19 breakout[J]. 中国物理B, 2022, 31(8): 80204-080204. |
[9] | Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Exponential sine chaotification model for enhancing chaos and its hardware implementation[J]. 中国物理B, 2022, 31(8): 80508-080508. |
[10] | Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Solutions and memory effect of fractional-order chaotic system: A review[J]. 中国物理B, 2022, 31(6): 60501-060501. |
[11] | Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). The dynamics of a memristor-based Rulkov neuron with fractional-order difference[J]. 中国物理B, 2022, 31(6): 60502-060502. |
[12] | Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). A class of two-dimensional rational maps with self-excited and hidden attractors[J]. 中国物理B, 2022, 31(3): 30503-030503. |
[13] | Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient[J]. 中国物理B, 2022, 31(2): 20505-020505. |
[14] | Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system[J]. 中国物理B, 2021, 30(12): 120504-120504. |
[15] | Tao Wang(王涛) and Tiegang Liu(刘铁钢). Transition to chaos in lid-driven square cavity flow[J]. 中国物理B, 2021, 30(12): 120508-120508. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 161
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 658
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|