中国物理B ›› 2025, Vol. 34 ›› Issue (2): 23101-023101.doi: 10.1088/1674-1056/ad990e

• • 上一篇    下一篇

A new search for the variation of fundamental constants using the rovibrational levels and isotope effects of the magnesium fluoride molecule

Di Wu(吴迪)1, Jin Wei(魏晋)1, Taojing Dong(董涛晶)1, Chenyu Zu(祖晨宇)1, Yong Xia(夏勇)1,2,3,†, and Jianping Yin(印建平)1,‡   

  1. 1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
    2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
    3 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
  • 收稿日期:2024-07-22 修回日期:2024-11-19 接受日期:2024-12-02 出版日期:2025-02-15 发布日期:2025-01-15
  • 通讯作者: Yong Xia, Jianping Yin E-mail:yxia@phy.ecnu.edu.cn;jpyin@phy.ecnu.edu.cn
  • 基金资助:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 12174115, 11834003, and 91836103).

A new search for the variation of fundamental constants using the rovibrational levels and isotope effects of the magnesium fluoride molecule

Di Wu(吴迪)1, Jin Wei(魏晋)1, Taojing Dong(董涛晶)1, Chenyu Zu(祖晨宇)1, Yong Xia(夏勇)1,2,3,†, and Jianping Yin(印建平)1,‡   

  1. 1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
    2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
    3 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
  • Received:2024-07-22 Revised:2024-11-19 Accepted:2024-12-02 Online:2025-02-15 Published:2025-01-15
  • Contact: Yong Xia, Jianping Yin E-mail:yxia@phy.ecnu.edu.cn;jpyin@phy.ecnu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 12174115, 11834003, and 91836103).

摘要: The recently demonstrated methods for cooling and trapping diatomic molecules offer new possibilities for precision searches in fundamental physical theories. Here, we propose to study the variations of the fine-structure constant ($\alpha =e^{2}/(\hslash c)$) and the proton-to-electron mass ratio ($\mu = m_{\rm p}/m_{\rm e}$) with time by taking advantage of the nearly degenerate rovibrational levels in the electronic states of the magnesium fluoride (MgF) molecule. Specifically, due to the cancellation between the fine-structure splitting and the rovibrational intervals in the different MgF natural isotopes, a degeneracy occurs for A$^{2} \Pi_{3 / 2}$ $(v'=0,\, J'=18.5,\,-)$ and A$^{2}\Pi_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$. We find that using the nearly degenerate energy level of such states can be 10$^{4}$ times more sensitive than using a pure rotational transition to measure the variations of $\alpha $ and $\mu $. To quantify the small gap between A$^{2} \Pi_{3 / 2}$ $(v'=0,\, J'=18.5,\, -)$ and A$^{2} \Pi_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$, special transitions of choice are feasible: X$^{2} \Sigma_{1 /2}^{+}$ $(v=0,\, J=19.5,\, +)$ to A$^{2}{\Pi }_{3 / 2}$ $(v'=0,\, J'=18.5,\, -)$ and X$^{2} \Sigma_{1 / 2}^{+}$ $(v=0,\, J=19.5,\, +)$ to A$^{2}{\Pi }_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$. In addition, we estimate the frequency uncertainties caused by the narrow linewidth, Zeeman shift, Stark shift, Doppler broadening and blackbody radiation.

关键词: cold molecule, proton-to-electron mass ratio, precision measurement

Abstract: The recently demonstrated methods for cooling and trapping diatomic molecules offer new possibilities for precision searches in fundamental physical theories. Here, we propose to study the variations of the fine-structure constant ($\alpha =e^{2}/(\hslash c)$) and the proton-to-electron mass ratio ($\mu = m_{\rm p}/m_{\rm e}$) with time by taking advantage of the nearly degenerate rovibrational levels in the electronic states of the magnesium fluoride (MgF) molecule. Specifically, due to the cancellation between the fine-structure splitting and the rovibrational intervals in the different MgF natural isotopes, a degeneracy occurs for A$^{2} \Pi_{3 / 2}$ $(v'=0,\, J'=18.5,\,-)$ and A$^{2}\Pi_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$. We find that using the nearly degenerate energy level of such states can be 10$^{4}$ times more sensitive than using a pure rotational transition to measure the variations of $\alpha $ and $\mu $. To quantify the small gap between A$^{2} \Pi_{3 / 2}$ $(v'=0,\, J'=18.5,\, -)$ and A$^{2} \Pi_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$, special transitions of choice are feasible: X$^{2} \Sigma_{1 /2}^{+}$ $(v=0,\, J=19.5,\, +)$ to A$^{2}{\Pi }_{3 / 2}$ $(v'=0,\, J'=18.5,\, -)$ and X$^{2} \Sigma_{1 / 2}^{+}$ $(v=0,\, J=19.5,\, +)$ to A$^{2}{\Pi }_{1 / 2}$ $(v''=0,\, J''=20.5,\, -)$. In addition, we estimate the frequency uncertainties caused by the narrow linewidth, Zeeman shift, Stark shift, Doppler broadening and blackbody radiation.

Key words: cold molecule, proton-to-electron mass ratio, precision measurement

中图分类号:  (Hyperfine interactions and isotope effects)

  • 31.30.Gs
33.15.Pw (Fine and hyperfine structure) 37.10.Mn (Slowing and cooling of molecules) 06.20.Jr (Determination of fundamental constants)