中国物理B ›› 2022, Vol. 31 ›› Issue (3): 30303-030303.doi: 10.1088/1674-1056/ac2299

• • 上一篇    下一篇

Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames

Qian Dong(董茜)1,†, R. Santana Carrillo1, Guo-Hua Sun(孙国华)2,‡, and Shi-Hai Dong(董世海)3,4,§   

  1. Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, CDMX 07738, Mexico;
    2 Catedratica CONACyT, Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, CDMX ′ 07738, Mexico;
    3 Research Center for Quantum Physics, Huzhou University, Huzhou 313000, China;
    4 Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico
  • 收稿日期:2021-06-28 修回日期:2021-08-14 接受日期:2021-09-01 出版日期:2022-02-22 发布日期:2022-02-17
  • 通讯作者: Qian Dong, Guo-Hua Sun, Shi-Hai Dong E-mail:dldongqian@gmail.com;sunghdb@yahoo.com;dongsh2@yahoo.com
  • 基金资助:
    This work was partially supported by the 20210414-SIPIPN, Mexico.

Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames

Qian Dong(董茜)1,†, R. Santana Carrillo1, Guo-Hua Sun(孙国华)2,‡, and Shi-Hai Dong(董世海)3,4,§   

  1. Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, CDMX 07738, Mexico;
    2 Catedratica CONACyT, Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, CDMX ′ 07738, Mexico;
    3 Research Center for Quantum Physics, Huzhou University, Huzhou 313000, China;
    4 Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico
  • Received:2021-06-28 Revised:2021-08-14 Accepted:2021-09-01 Online:2022-02-22 Published:2022-02-17
  • Contact: Qian Dong, Guo-Hua Sun, Shi-Hai Dong E-mail:dldongqian@gmail.com;sunghdb@yahoo.com;dongsh2@yahoo.com
  • Supported by:
    This work was partially supported by the 20210414-SIPIPN, Mexico.

摘要: Using a single-mode approximation, we carry out the entanglement measures, e.g., the negativity and von Neumann entropy when a tetrapartite generalized GHZ state is treated in a noninertial frame, but only uniform acceleration is considered for simplicity. In terms of explicit negativity calculated, we notice that the difference between the algebraic average $\pi_{4}$ and geometric average $\varPi_{4}$ is very small with the increasing accelerated observers and they are totally equal when all four qubits are accelerated simultaneously. The entanglement properties are discussed from one accelerated observer to all four accelerated observers. It is shown that the entanglement still exists even if the acceleration parameter $r$ goes to infinity. It is interesting to discover that all 1-1 tangles are equal to zero, but 1-3 and 2-2 tangles always decrease when the acceleration parameter $r$ increases. We also study the von Neumann entropy and find that it increases with the number of the accelerated observers. In addition, we find that the von Neumann entropy $S_{\text{ABCDI}}$, $S_{\text{ABCIDI}}$, $S_{\text{ABICIDI}}$ and $S_{\text{AIBICIDI}}$ always decrease with the controllable angle $\theta$, while the entropies $S_{3-3~\rm non}$, $S_{3-2~\rm non}$, $S_{3-1~\rm non}$ and $S_{3-0~\rm non}$ first increase with the angle $\theta$ and then decrease with it.

关键词: tetrapartite, generalized GHZ state, entanglement measures, dirac field, noninertial frames

Abstract: Using a single-mode approximation, we carry out the entanglement measures, e.g., the negativity and von Neumann entropy when a tetrapartite generalized GHZ state is treated in a noninertial frame, but only uniform acceleration is considered for simplicity. In terms of explicit negativity calculated, we notice that the difference between the algebraic average $\pi_{4}$ and geometric average $\varPi_{4}$ is very small with the increasing accelerated observers and they are totally equal when all four qubits are accelerated simultaneously. The entanglement properties are discussed from one accelerated observer to all four accelerated observers. It is shown that the entanglement still exists even if the acceleration parameter $r$ goes to infinity. It is interesting to discover that all 1-1 tangles are equal to zero, but 1-3 and 2-2 tangles always decrease when the acceleration parameter $r$ increases. We also study the von Neumann entropy and find that it increases with the number of the accelerated observers. In addition, we find that the von Neumann entropy $S_{\text{ABCDI}}$, $S_{\text{ABCIDI}}$, $S_{\text{ABICIDI}}$ and $S_{\text{AIBICIDI}}$ always decrease with the controllable angle $\theta$, while the entropies $S_{3-3~\rm non}$, $S_{3-2~\rm non}$, $S_{3-1~\rm non}$ and $S_{3-0~\rm non}$ first increase with the angle $\theta$ and then decrease with it.

Key words: tetrapartite, generalized GHZ state, entanglement measures, dirac field, noninertial frames

中图分类号:  (Quantum information)

  • 03.67.-a
03.67.Mn (Entanglement measures, witnesses, and other characterizations) 03.65.Ud (Entanglement and quantum nonlocality) 04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)