中国物理B ›› 2020, Vol. 29 ›› Issue (12): 120502-.doi: 10.1088/1674-1056/aba9c4
收稿日期:
2020-05-31
修回日期:
2020-07-12
接受日期:
2020-07-28
出版日期:
2020-12-01
发布日期:
2020-12-02
Yu-Hang Yin(尹宇航)1, Si-Jia Chen(陈思佳)1, and Xing Lü(吕兴)1,2,†
Received:
2020-05-31
Revised:
2020-07-12
Accepted:
2020-07-28
Online:
2020-12-01
Published:
2020-12-02
Contact:
†Corresponding author. E-mail: Supported by:
中图分类号: (Solitons)
. [J]. 中国物理B, 2020, 29(12): 120502-.
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations[J]. Chin. Phys. B, 2020, 29(12): 120502-.
[1] Xu H N, Ruan W Y, Zhang Y and Lü X Appl. Math. Lett. 99 105976 DOI: 10.1016/j.aml.2019.07.0072020 [2] Li L, Yu F J and Duan C N Appl. Math. Lett. 110 106584 DOI: 10.1016/j.aml.2020.1065842020 [3] Chen S J, Yin Y H, Ma W X and Lü X Anal. Math. Phys. 9 2329 DOI: 10.1007/s13324-019-00338-22019 [4] Lü X and Ma W X Nonlinear Dyn. 85 1217 DOI: 10.1007/s11071-016-2755-82016 [5] Hua Y F, Guo B L, Ma W X and Lü X 2019 Appl. Math. Model. 74 185 DOI: 10.1016/j.apm.2019.04.044 [6] Yin Y H, Ma W X, Liu J G and Lü X 2018 Comput. Math. Appl. 76 127 DOI: 10.1016/j.camwa.2018.06.020 [7] Lü X, Ma W X, Yu J, Lin F H and Khalique C M Nonlinear Dyn. 82 1211 DOI: 10.1007/s11071-015-2227-62015 [8] Yu F J Appl. Math. Lett. 92 108 DOI: 10.1016/j.aml.2019.01.0102019 [9] Yu F J and Fan R Appl. Math. Lett. 103 106209 DOI: 10.1016/j.aml.2020.1062092020 [10] Chen S J, Ma W X and Lü X Commun. Nonlinear Sci. Numer. Simul. 83 105135 DOI: 10.1016/j.cnsns.2019.1051352020 [11] Hirota R2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press) [12] Xia J W, Zhao Y W and Lü X Commun. Nonlinear Sci. Numer. Simul. 90 105260 DOI: 10.1016/j.cnsns.2020.1052602020 [13] Gao L N, Zi Y Y, Yin Y H, Ma W X and Lü X Nonlinear Dyn. 89 2233 DOI: 10.1007/s11071-017-3581-32017 [14] Lü X, Ma W X, Yu J and Khalique C M Commun. Nonlinear Sci. Numer. Simul. 31 40 DOI: 10.1016/j.cnsns.2015.07.0072016 [15] Lü X, Ma W X, Zhou Y and Khalique C M Comput. Math. Appl. 71 1560 DOI: 10.1016/j.camwa.2016.02.0172016 [16] Lü X and Lin F Commun. Nonlinear Sci. Numer. Simul. 32 241 DOI: 10.1016/j.cnsns.2015.08.0082016 [17] Lü X 2015 Nonlinear Dyn. 81 239 DOI: 10.1007/s11071-015-1985-5 [18] Lü, Ma W X, Yu J, Lin F H and Khalique C M 2015 Nonlinear Dyn. 82 1211 DOI: 10.1007/s11071-015-2227-6 [19] Lü, Lin F H and Qi F H 2015 Appl. Math. Model. 39 3221 DOI: 10.1016/j.apm.2014.10.046 [20] Lü X, Ma W X, Chen S T and Khalique C M Appl. Math. Lett. 58 13 DOI: 10.1016/j.aml.2015.12.0192016 [21] Xu Z H, Chen H L, Jiang M R, Dai Z D and Chen W Nonlinear Dyn. 78 461 DOI: 10.1007/s11071-014-1452-82014 [22] Ma W X and Abdeljabbar A Appl. Math. Lett. 25 1500 DOI: 10.1016/j.aml.2012.01.0032012 [23] Zhang Y and Ma W X 2015 Appl. Math. Com. 256 252 DOI: 10.1016/j.amc.2015.01.027 [24] Zhang Y F and Ma W X 2015 Z. Naturforsch. 70a 263 DOI: 10.1515/zna-2014-0361 [25] Ma W X and Fan E G Comput. Math. Appl. 61 950 DOI: 10.1016/j.camwa.2010.12.0432011 [26] Gao L N, Zhao X Y, Zi Y Y, Yu J and Lü X Comput. Math. Appl. 72 1225 DOI: 10.1016/j.camwa.2016.06.0082016 [27] Ma W X, Zhang Y, Tang Y N and Tu J Y 2012 Appl. Math. Comput. 218 7174 DOI: 10.1016/j.amc.2011.12.085 [28] Ma W X, Qin Z Y and Lü X Nonlinear Dyn. 84 923 DOI: 10.1007/s11071-015-2539-62016 [29] Ma W X Phys. Lett. A 379 1975 DOI: 10.1016/j.physleta.2015.06.0612015 [30] Geng X G J. Phys. A: Math. Gen. 36 2289 DOI: 10.1088/0305-4470/36/9/3072003 [31] Zha Q L Phys. Lett. A 377 3021 DOI: 10.1016/j.physleta.2013.09.0232013 [32] Geng X G and Ma Y L Phys. Lett. A 369 285 DOI: 10.1016/j.physleta.2007.04.0992007 [33] Zha Q L and Li Z B Mod. Phys. Lett. B 23 2971 DOI: 10.1142/S02179849090210532009 [34] Wazwaz A M 2014 Cent. Eur. J. Eng. 4 352 https://doi.org/10.2478/s13531-013-0173-y [35] Liu N and Liu Y S Comput. Math. Appl. 71 1645 DOI: 10.1016/j.camwa.2016.03.0122016 [36] Zhang H Q and Ma W X Comput. Math. Appl. 73 2339 DOI: 10.1016/j.camwa.2017.03.0142017 |
[1] | Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems[J]. 中国物理B, 2023, 32(3): 30506-030506. |
[2] | Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation[J]. 中国物理B, 2023, 32(3): 30505-030505. |
[3] | Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Modulational instability of a resonantly polariton condensate in discrete lattices[J]. 中国物理B, 2023, 32(3): 30502-030502. |
[4] | Wen-Xiu Ma(马文秀). Matrix integrable fifth-order mKdV equations and their soliton solutions[J]. 中国物理B, 2023, 32(2): 20201-020201. |
[5] | Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane[J]. 中国物理B, 2023, 32(2): 20504-020504. |
[6] | D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Charge self-trapping in two strand biomolecules: Adiabatic polaron approach[J]. 中国物理B, 2023, 32(1): 10506-010506. |
[7] | Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation[J]. 中国物理B, 2023, 32(1): 10505-010505. |
[8] | Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Reciprocal transformations of the space-time shifted nonlocal short pulse equations[J]. 中国物理B, 2022, 31(12): 120201-120201. |
[9] | Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation[J]. 中国物理B, 2022, 31(11): 110201-110201. |
[10] | Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation[J]. 中国物理B, 2022, 31(10): 100502-100502. |
[11] | Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters[J]. 中国物理B, 2022, 31(8): 80202-080202. |
[12] | Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Oscillation properties of matter-wave bright solitons in harmonic potentials[J]. 中国物理B, 2022, 31(8): 80506-080506. |
[13] | Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation[J]. 中国物理B, 2022, 31(7): 70201-070201. |
[14] | Ahmet Bekir and Emad H M Zahran. Nonlinear dynamical wave structures of Zoomeron equation for population models[J]. 中国物理B, 2022, 31(6): 60401-060401. |
[15] | Xi-zhong Liu(刘希忠) and Jun Yu(俞军). A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis[J]. 中国物理B, 2022, 31(5): 50201-050201. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 664
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|