中国物理B ›› 2019, Vol. 28 ›› Issue (8): 85201-085201.doi: 10.1088/1674-1056/28/8/085201
• PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES • 上一篇 下一篇
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军)
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军)
摘要: A novel transit-time oscillator (TTO) is proposed in this paper. An axial cathode which has been widely used in high power microwave (HPM) source and an extractor with radial feature are adopted. In this way, the inherent advantages of axial and radial TTO, both of which can be utilized as high-quality intense relativistic electron beam (IREB), can be generated and the power capacity is also increased. The working mode is π/2 mode of TM01 based on small-signal theory, and under the same energy storage, the maximum electric field in extractor decreases 16.3%. Besides, by utilizing the natural bending of the solenoid, this TTO saves over 60% of the length required by the uniform magnetic field, and consequently reduces the energy consumed by solenoid. The PIC simulation shows that by using 1.0-T decreasing magnetic field generated by the shorter solenoid, 3.37-GW microwave at 12.43 GHz is generated with 620-kV and 13.27-kA input, and the overall conversion efficiency is 41%.
中图分类号: (Electrostatic waves and oscillations (e.g., ion-acoustic waves))