中国物理B ›› 2019, Vol. 28 ›› Issue (7): 70304-070304.doi: 10.1088/1674-1056/28/7/070304
• SPECIAL TOPIC—Recent advances in thermoelectric materials and devices • 上一篇 下一篇
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕)
收稿日期:
2018-12-23
修回日期:
2019-05-13
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
Fen-Zhuo Guo
E-mail:gfenzhuo@bupt.edu.cn
基金资助:
Project supported by the National Natural Science Foundation of China (Grant Nos. 61572081, 61672110, and 61671082).
Shi-Hui Wei(魏士慧)1,2, Fen-Zhuo Guo(郭奋卓)1,2, Xin-Hui Li(李新慧)1, Qiao-Yan Wen(温巧燕)1
Received:
2018-12-23
Revised:
2019-05-13
Online:
2019-07-05
Published:
2019-07-05
Contact:
Fen-Zhuo Guo
E-mail:gfenzhuo@bupt.edu.cn
Supported by:
Project supported by the National Natural Science Foundation of China (Grant Nos. 61572081, 61672110, and 61671082).
摘要:
Recently, Tavakoli et al. proposed a self-testing scheme in the prepare-and-measure scenario, showing that self-testing is not necessarily based on entanglement and violation of a Bell inequality[Phys. Rev. A 98 062307 (2018)]. They realized the self-testing of preparations and measurements in an N→1 (N ≥ 2) random access code (RAC), and provided robustness bounds in a 2→1 RAC. Since all N→1 RACs with shared randomness are combinations of 2→1 and 3→1 RACs, the 3→1 RAC is just as important as the 2→1 RAC. In this paper, we find a set of preparations and measurements in the 3→1 RAC, and use them to complete the robustness self-testing analysis in the prepare-and-measure scenario. The method is robust to small but inevitable experimental errors.
中图分类号: (Entanglement and quantum nonlocality)
魏士慧, 郭奋卓, 李新慧, 温巧燕. Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code[J]. 中国物理B, 2019, 28(7): 70304-070304.
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code[J]. Chin. Phys. B, 2019, 28(7): 70304-070304.
[1] |
Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani, V 2007 Phys. Rev. Lett. 98 230501
doi: 10.1103/PhysRevLett.98.230501 |
[2] |
Vazirani U and Vidick T 2014 Phys. Rev. Lett. 113 140501
doi: 10.1103/PhysRevLett.113.140501 |
[3] | MillerCA and Shi Y 2016 J. ACM 63 33 |
[4] |
Tan Y G, Hu Y H and Yang H F 2016 Chin. Phys. Lett. 33 030302
doi: 10.1088/0256-307X/33/3/030302 |
[5] |
Reichardt B W and Unger F 2013 Nature 496 456
doi: 10.1038/nature12035 |
[6] | McKague M 2016 Theory Comput. 12 1 |
[7] |
Gheorghiu A, Wallden P and Kashefi E 2017 New J. Phys. 19 023043
doi: 10.1088/1367-2630/aa5cff |
[8] |
Liu L, Gao T and Yan F 2018 Chin. Phys. B 27 020306
doi: 10.1088/1674-1056/27/2/020306 |
[9] |
Popescu S and Rohrlich D 1992 Phys. Lett. A 169 411
doi: 10.1016/0375-9601(92)90819-8 |
[10] |
Vazirani U and Vidick T 1969 Phys. Rev. Lett. 23 880
doi: 10.1103/PhysRevLett.23.880 |
[11] | Mayers D and Yao A 2004 Quant. Inf. Comp. 4 273 |
[12] |
McKague M, Yang T H and Scarani V 2012 J. Phys. A: Math. Theor 45 455304
doi: 10.1088/1751-8113/45/45/455304 |
[13] |
Yang T H and Navascués M 2013 Phys. Rev. A 87 050102
doi: 10.1103/PhysRevA.87.050102 |
[14] | Wu X, Cai Y, Yang T H, Le H N, Bancal J D and Scarani, V 2014 New J. Phys. 90 042339 |
[15] |
Pál K F, Vértesi T and Navascués M 2014 Phys. Rev. A 90 042340
doi: 10.1103/PhysRevA.90.042340 |
[16] |
Wang Y, Wu X and Scarani V 2016 New J. Phys. 18 025021
doi: 10.1088/1367-2630/18/2/025021 |
[17] |
McKague M 2016 New J. Phys. 18 045013
doi: 10.1088/1367-2630/18/4/045013 |
[18] |
Bowles J, Šupić I, Cavalcanti D and Acín A 2018 Phys. Rev. A 98 042336
doi: 10.1103/PhysRevA.98.042336 |
[19] |
Coladangelo A, Goh K T and Scarani V 2017 Nat. Commun. 8 15485
doi: 10.1038/ncomms15485 |
[20] |
Šupić I, Coladangelo A, Augusiak R and Acín A 2018 New J. Phys. 20 083041
doi: 10.1088/1367-2630/aad89b |
[21] |
Kaniewski J 2016 Phys. Rev. Lett. 117 070402
doi: 10.1103/PhysRevLett.117.070402 |
[22] |
Tavakoli A, Kaniewski J, Vertesi T and Rosset D 2018 Phys. Rev. A 98 062307
doi: 10.1103/PhysRevA.98.062307 |
[23] | Ambainis A, Leung D, Mancinska L and Ozols M 2008 arXiv:0810.2937 [hep-ph] |
[24] |
Gallego R, Brunner N, Hadley C and Acín A 2010 Phys. Rev. Lett. 105 230501
doi: 10.1103/PhysRevLett.105.230501 |
[25] |
Li H W, Pawlowski M, Yin Z Q, Guo G C and Han Z F 2012 Phys. Rev. A 85 052308
doi: 10.1103/PhysRevA.85.052308 |
[26] |
Wang Y K, Qin S J, Wu X, Gao F and Wen Q Y 2015 Phys. Rev. A 92 052321
doi: 10.1103/PhysRevA.92.052321 |
[27] |
Hayashi M, Iwama K, Nishimura H, Raymond R and Yamashita S 2006 New J. Phys. 8 129
doi: 10.1088/1367-2630/8/8/129 |
[28] |
Casaccino A, Galvao E F and Severini S 2008 Phys. Rev. A 78 022310
doi: 10.1103/PhysRevA.78.022310 |
[1] | Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Unified entropy entanglement with tighter constraints on multipartite systems[J]. 中国物理B, 2023, 32(3): 30304-030304. |
[2] | Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis[J]. 中国物理B, 2023, 32(2): 20506-020506. |
[3] | Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Transformation relation between coherence and entanglement for two-qubit states[J]. 中国物理B, 2023, 32(1): 10304-010304. |
[4] | Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides[J]. 中国物理B, 2022, 31(12): 120305-120305. |
[5] | Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Measurement-device-independent one-step quantum secure direct communication[J]. 中国物理B, 2022, 31(12): 120303-120303. |
[6] | Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Quantum correlation and entropic uncertainty in a quantum-dot system[J]. 中国物理B, 2022, 31(10): 100303-100303. |
[7] | Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Measurement-device-independent quantum secret sharing with hyper-encoding[J]. 中国物理B, 2022, 31(10): 100302-100302. |
[8] | Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Steering quantum nonlocalities of quantum dot system suffering from decoherence[J]. 中国物理B, 2022, 31(9): 90302-090302. |
[9] | Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Probabilistic quantum teleportation of shared quantum secret[J]. 中国物理B, 2022, 31(9): 90303-090303. |
[10] | Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Robustness of two-qubit and three-qubit states in correlated quantum channels[J]. 中国物理B, 2022, 31(7): 70302-070302. |
[11] | I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems[J]. 中国物理B, 2022, 31(6): 60301-060301. |
[12] | Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Constructing the three-qudit unextendible product bases with strong nonlocality[J]. 中国物理B, 2022, 31(6): 60302-060302. |
[13] | Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities[J]. 中国物理B, 2022, 31(5): 50303-050303. |
[14] | Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state[J]. 中国物理B, 2022, 31(5): 50301-050301. |
[15] | Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs[J]. 中国物理B, 2022, 31(4): 40308-040308. |
|