中国物理B ›› 2018, Vol. 27 ›› Issue (4): 48403-048403.doi: 10.1088/1674-1056/27/4/048403
所属专题: TOPICAL REVIEW — Recent advances in thermoelectric materials and devices
• TOPIC REVIEW—Thermal and thermoelectric properties of nano materials • 上一篇 下一篇
Min Hong(洪敏), Zhi-Gang Chen(陈志刚), Jin Zou(邹进)
收稿日期:
2018-01-23
修回日期:
2018-03-02
出版日期:
2018-04-05
发布日期:
2018-04-05
通讯作者:
Zhi-Gang Chen, Jin Zou
E-mail:zhigang.chen@usq.edu.au;j.zou@uq.edu.au
基金资助:
Project supported by the Australian Research Council. Zhi-Gang Chen thanks the USQ start-up grant and strategic research grant.
Min Hong(洪敏)1,2, Zhi-Gang Chen(陈志刚)1,2, Jin Zou(邹进)2,3
Received:
2018-01-23
Revised:
2018-03-02
Online:
2018-04-05
Published:
2018-04-05
Contact:
Zhi-Gang Chen, Jin Zou
E-mail:zhigang.chen@usq.edu.au;j.zou@uq.edu.au
Supported by:
Project supported by the Australian Research Council. Zhi-Gang Chen thanks the USQ start-up grant and strategic research grant.
摘要:
Thermoelectric materials, enabling the directing conversion between heat and electricity, are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels. Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature. Due to the intensive theoretical investigations and experimental demonstrations, significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials. In this review, we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties. On this basis, we studied the effect of material parameters on thermoelectric properties. Then, we analyzed the features of Bi2Te3-based thermoelectric materials, including the lattice defects, anisotropic behavior and the strong bipolar conduction at relatively high temperature. Then we accordingly summarized the strategies for enhancing the thermoelectric performance, including point defect engineering, texture alignment, and band gap enlargement. Moreover, we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method, ball milling, and melt spinning. Lastly, we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3, which will enlighten the enhancement of thermoelectric performance in broader materials
中图分类号: (Thermoelectric, electrogasdynamic and other direct energy conversion)
洪敏, 陈志刚, 邹进. Fundamental and progress of Bi2Te3-based thermoelectric materials[J]. 中国物理B, 2018, 27(4): 48403-048403.
Min Hong(洪敏), Zhi-Gang Chen(陈志刚), Jin Zou(邹进). Fundamental and progress of Bi2Te3-based thermoelectric materials[J]. Chin. Phys. B, 2018, 27(4): 48403-048403.
[1] | Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K,Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554 |
[2] | Lyeo H K, Khajetoorians A A, Shi L, Pipe K P, Ram R J, Shakouri Aand Shih C K 2004 Science 303 816 |
[3] | Kim H S, Liu W and Ren Z 2017 Energy Environ. Sci. 10 69 |
[4] | Riffat S B and Ma X L 2003 Appl. Therm. Eng. 23 913 |
[5] | Tritt T M and Subramanian M A 2006 Mrs. Bull. 31 188 |
[6] | Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Adv. Mater. 29 1605884 |
[7] | Vining C B 2009 Nat. Mater. 8 83 |
[8] | Ibrahim E A, Szybist J P and Parks J E 2010 P. I. Mech. Eng. D-J. Automob. Eng. 224 1097 |
[9] | Li M, Xu S, Chen Q and Zheng L 2011 J. Electron. Mater. 40 1136 |
[10] | Schierle-Arndt K and Hermes W 2013 Chem. Unserer. Zeit. 47 92 |
[11] | Kraemer D, Jie Q, McEnaney K, Cao F, Liu W, Weinstein L A, LoomisJ, Ren Z and Chen G 2016 Nature Energy 1 16153 |
[12] | Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, WangX, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z and Chen G 2011 Nat. Mater. 10 532 |
[13] | Friedensen V P 1998 Acta Astronaut. 42 395 |
[14] | Yang J H and Caillat T 2006 Mrs Bull. 31 224 |
[15] | O'Brien R C, Ambrosi R M, Bannister N P, Howe S D and Atkinson HV 2008 J. Nucl. Mater. 377 506 |
[16] | Kraemer D, Poudel B, Feng H, Caylor J C, Yu B, Yan X, Ma Y, WangX, Wang D, Muto A, McEnaney K, Chiesa M, Ren Z and Chen G 2011 Nat. Mater. 10 532 |
[17] | Bahk J H, Fang H, Yazawa K and Shakouri A 2015 J. Mater. Chem. C 3 10362 |
[18] | Hicks L and Dresselhaus M 1993 Phys. Rev. B 47 16631 |
[19] | Harman T C, Taylor P J, Walsh M P and LaForge B E 2002 Science 297 2229 |
[20] | Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, BroidoD, Chen G and Ren Z 2013 Proc. Natl. Acad. Sci. USA 110 13261 |
[21] | Han C, Sun Q, Li Z and Dou S X 2016 Adv. Energy Mater. 6 1600498 |
[22] | Yang H, Bahk J H, Day T, Mohammed A M S, Snyder G J, Shakouri Aand Wu Y 2015 Nano Lett. 15 1349 |
[23] | Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66 |
[24] | Liu W, Zhou J, Jie Q, Li Y, Kim H S, Bao J, Chen G and Ren Z 2016 Energy Environ. Sci. 9 530 |
[25] | Liu W, Kim H S, Chen S, Jie Q, Lv B, Yao M, Ren Z, Opeil C P, WilsonS, Chu C W and Ren Z 2015 Proc. Natl. Acad. Sci. USA 112 3269 |
[26] | Yan J, Gorai P, Ortiz B, Miller S, Barnett S A, Mason T, Stevanovic Vand Toberer E S 2015 Energy Environ. Sci. 8 983 |
[27] | Hong M, Chen Z G, Pei Y, Yang L and Zou J 2016 Phys. Rev. B 94 161201 |
[28] | Zhao L, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, DravidV P and Kanatzidis M G 2014 Nature 508 373 |
[29] | Yang L, Chen Z G, Han G, Hong M, Zou Y and Zou J 2015 Nano Energy 16 367 |
[30] | Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day Tand Snyder G J 2012 Nat. Mater. 11 422 |
[31] | Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z,Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043 |
[32] | Pichanusakorn P and Bandaru P 2010 Mat. Sci. Eng. R. 67 19 |
[33] | Hong M, Chen Z G, Yang L, Chasapis T C, Kang S D, Zou Y, Auchterlonie G J, Kanatzidis M G, Snyder G J and Zou J 2017 J. Mater. Chem. A 5 10713 |
[34] | Kanatzidis M G 2010 Chem. Mater. 22 648 |
[35] | Son J S, Choi M K, Han M K, Park K, Kim J Y, Lim S J, Oh M, KukY, Park C, Kim S J and Hyeon T 2012 Nano Lett. 12 640 |
[36] | Zhang G, Kirk B, Jauregui L A, Yang H, Xu X, Chen Y P and Wu Y 2012 Nano Lett. 12 56 |
[37] | Hong M, Chasapis T C, Chen Z G, Yang L, Kanatzidis M G, Snyder GJ and Zou J 2016 ACS Nano 10 4719 |
[38] | Hong M, Chen Z G, Yang L and Zou J 2016 Nano Energy 20 144 |
[39] | Zhang X D and Xie Y 2013 Chem. Soc. Rev. 42 8187 |
[40] | Fang H, Feng T, Yang H, Ruan X and Wu Y 2013 Nano Lett. 13 2058 |
[41] | Fang H, Yang H and Wu Y 2014 Chem. Mater. 26 3322 |
[42] | Hong M, Chen Z G, Yang L and Zou J 2016 Nanoscale 8 8681 |
[43] | Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, HuangM, Snyder G J and Pei Y 2017 Adv. Mater. 29 1606768 |
[44] | Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y, Hanus R, Snyder G J andPei Y 2017 Nat. Commun. 8 13828 |
[45] | Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. |
[46] | Hong M, Chen Z G, Yang L, Liao Z M, Zou Y C, Chen Y H, Matsumura S and Zou J 2018 Adv. Energy Mater. 8 1702333 |
[47] | Hong M, Chen Z G, Yang L, Zou Y C, Dargusch M S, Wang H andZou J 2018 Adv. Mater. 30 1705942 |
[48] | Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, DravidV P and Kanatzidis M G 2012 Nature 489 414 |
[49] | Sootsman J R, Chung D Y and Kanatzidis M G 2009 Angew. Chem. Int. Ed. 48 8616 |
[50] | Wu H J, Zhao L D, Zheng F S, Wu D, Pei Y L, Tong X, Kanatzidis MG and He J Q 2014 Nat. Commun. 5 5515 |
[51] | Wu H, Zheng F, Wu D, Ge Z H, Liu X and He J 2015 Nano Energy 13 626 |
[52] | Wu H, Carrete J, Zhang Z, Qu Y, Shen X, Wang Z, Zhao L D and He J 2014 NPG Asia Mater. 6 e108 |
[53] | He J, Kanatzidis M G and Dravid V P 2013 Materials Today 16 166 |
[54] | Tritt T M 1999 Science 283 804 |
[55] | Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould R W, Cuff DC, Tang M Y, Dresselhaus M S, Chen G and Ren Z 2008 Nano Lett. 8 4670 |
[56] | Moshwan R, Yang L, Zou J and Chen Z G 2017 Adv. Funct. Mater. 27 1703278 |
[57] | Tan G, Zhao L D, Shi F, Doak J W, Lo S H, Sun H, Wolverton C, DravidV P, Uher C and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 7006 |
[58] | Tan G, Shi F, Hao S, Chi H, Zhao L D, Uher C, Wolverton C, Dravid VP and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 5100 |
[59] | Tan G, Shi F, Hao S, Chi H, Bailey T P, Zhao L D, Uher C, WolvertonC, Dravid V P and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11507 |
[60] | Tan G, Shi F, Doak J W, Sun H, Zhao L D, Wang P, Uher C, WolvertonC, Dravid V P and Kanatzidis M G 2015 Energy Environ. Sci. 8 267 |
[61] | Yang L, Chen Z G, Dargusch M S and Zou J 2018 Adv. Energy Mater. 8 1701797 |
[62] | Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, XuH, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141 |
[63] | Peng K, Lu X, Zhan H, Hui S, Tang X, Wang G, Dai J, Uher C, WangG and Zhou X 2016 Energy Environ. Sci. 9 454 |
[64] | Bell L E 2008 Science 321 1457 |
[65] | DiSalvo F J 1999 Science 285 703 |
[66] | Chen Z G, Han G, Yang L, Cheng L and Zou J 2012 Prog. Nat. Sci. 22 535 |
[67] | Wang H, Pei Y, LaLonde A D and Snyder G J 2012 Proc. Natl. Acad. Sci. USA 109 9705 |
[68] | Tang Y, Gibbs Z M, Agapito L A, Li G, Kim H S, Nardelli M B, Curtarolo S and Snyder G J 2015 Nat. Mater. 14 1223 |
[69] | Wang X W, Lee H, Lan Y C, Zhu G H, Joshi G, Wang D Z, Yang J,Muto A J, Tang M Y, Klatsky J, Song S, Dresselhaus M S, Chen G andRen Z F 2008 Appl. Phys. Lett. 93 193121 |
[70] | Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D,Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and RenZ 2008 Science 320 634 |
[71] | Fu C, Zhu T, Liu Y, Xie H and Zhao X 2015 Energy Environ. Sci. 8 216 |
[72] | Yang J 2007 J. Electron. Mater. 36 703 |
[73] | Zhang X and Zhao L D 2015 Journal of Materiomics 1 92 |
[74] | Wood C 1988 Rep. Prog. Phys. 51 459 |
[75] | Beekman M and Nolas G S 2008 J. Mater. Chem. 18 842 |
[76] | Shakouri A 2005 IEEE Thermoelectric, thermionic and thermophotovoltaic energy conversion., p. 495 |
[77] | Mahan G D 2005 Thermoelectric Effect. In Encyclopedia of Condensed Matter Physics, Editors-in-Chief:Franco B, Eds. Gerald L L, Peter W(Oxford:Elsevier) p. 180 |
[78] | Dimitrijev S 2006 Principles of semiconductor devices (New York:Oxford University Press) |
[79] | Hamaguchi C Basic Semiconductor Physics |
[80] | Ioffe A F 1960 Physics of Semiconductors (Academic Press) |
[81] | Vesely F 1995 Computational Physics:an introduction (New York:Plenum) |
[82] | Mohamad A A 2011 Lattice Boltzmann Method (Dordrecht:Springer) |
[83] | Nolas G S, Sharp J and Goldsmid H J 2001 Thermoelectrics:Basic Principles and New Materials Developments (Berlin:Springer) |
[84] | Ashcroft N W and Mermin N D 1976 Holt, Rinehart and Winston (NewYork) |
[85] | Fistul I V 1969 Heavily Doped Semiconductors (New York:Springer) |
[86] | Zhao L, Lo S H, He J, Li H, Biswas K, Androulakis J, Wu C I, HoganT P, Chung D Y, Dravid V P and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 20476 |
[87] | Heremans J P, Thrush C M and Morelli D T 2004 Phys. Rev. B 70 115334 |
[88] | Huang B L and Kaviany M 2008 Phys. Rev. B 77 125209 |
[89] | Faleev S V and Léonard F 2008 Phys. Rev. B 77 214304 |
[90] | Ravich Y I, Efimova B A and Smirnov I A 1970 Semiconducting Lead Chalcogenides (Plenum Press) |
[91] | Wu D, Zhao L D, Hao S Q, Jiang Q K, Zheng F S, Doak J W, Wu HJ, Chi H, Gelbstein Y, Uher C, Wolverton C, Kanatzidis M and He J Q 2014 J. Am. Chem. Soc. 136 11412 |
[92] | Chasapis T C, Lee Y, Hatzikraniotis E, Paraskevopoulos K M, Chi H,Uher C and Kanatzidis M G 2015 Phys. Rev. B 91 085207 |
[93] | Chen C L, Wang H, Chen Y Y, Day T and Snyder G J 2014 J. Mater. Chem. A 2 11171 |
[94] | Wang H, LaLonde A D, Pei Y and Snyder G J 2013 Adv. Funct. Mater. 23 1586 |
[95] | Mishra S K, Satpathy S and Jepsen O 1997 J. Phys.:Condens. Matter 9 461 |
[96] | Qiu B and Ruan X 2009 Phys. Rev. B 80 165203 |
[97] | Yavorsky B Y, Hinsche N F, Mertig I and Zahn P 2011 Phys. Rev. B 84 165208 |
[98] | Richter W, Kohler H and Becker C R 1977 Phys. Status Solidi B 84 619 |
[99] | Hu L, Wu H, Zhu T, Fu C, He J, Ying P and Zhao X 2015 Adv. Energy Mater. 5 1500411 |
[100] | Hu L, Zhu T, Liu X and Zhao X 2014 Adv. Funct. Mater. 24 5211 |
[101] | Prokofieva L V, Pshenay-Severin D A, Konstantinov P P and ShabaldinA A 2009 Semiconductors 43 973 |
[102] | Zhao L D, Zhang B P, Li J F, Zhang H L and Liu W S 2008 Solid State Sci. 10 651 |
[103] | Xie W, Tang X, Yan Y, Zhang Q and Tritt T M 2009 Appl. Phys. Lett. 94 102111 |
[104] | Mehta R J, Zhang Y, Karthik C, Singh B, Siegel R W, Borca-Tasciuc Tand Ramanath G 2012 Nat. Mater. 11 233 |
[105] | Soni A, Shen Y, Yin M, Zhao Y, Yu L, Hu X, Dong Z, Khor K A,Dresselhaus M S and Xiong Q 2012 Nano Lett. 12 4305 |
[106] | Soni A, Zhao Y Y, Yu L G, Aik M K K, Dresselhaus M S and Xiong QH 2012 Nano Lett. 12 1203 |
[107] | Scheele M, Oeschler N, Veremchuk I, Reinsberg K G, Kreuziger A M,Kornowski A, Broekaert J, Klinke C and Weller H 2010 ACS Nano 4 4283 |
[108] | Min Y, Roh J W, Yang H, Park M, Kim S I, Hwang S, Lee S M, Lee KH and Jeong U 2013 Adv. Mater. 25 1425 |
[109] | Min Y, Park G, Kim B, Giri A, Zeng J, Roh J W, Kim S I, Lee K H andJeong U 2015 ACS Nano 9 6843 |
[110] | Suh D, Lee S, Mun H, Park S H, Lee K H, Wng Kim S, Choi J Y andBaik S 2015 Nano Energy 13 67 |
[111] | Zhang Y, Day T, Snedaker M L, Wang H, Krämer S, Birkel C S, Ji X, Liu D, Snyder G J and Stucky G D 2012 Adv. Mater. 24 5065 |
[112] | Zhang Y, Wang H, Kräemer S, Shi Y, Zhang F, Snedaker M, Ding K, Moskovits M, Snyder G J and Stucky G D 2011 ACS Nano 5 3158 |
[113] | Sun Y, Cheng H, Gao S, Liu Q, Sun Z, Xiao C, Wu C, Wei S and XieY 2012 J. Am. Chem. Soc. 134 20294 |
[114] | Hong M, Chen Z G, Yang L, Han G and Zou J 2015 Adv. Electron. Mater. 1 1500025 |
[115] | Mehta R J, Zhang Y, Zhu H, Parker D S, Belley M, Singh D J, Ramprasad R, Borca-Tasciuc T and Ramanath G 2012 Nano Lett. 12 4523 |
[116] | Yu F, Xu B, Zhang J, Yu D, He J, Liu Z and Tian Y 2012 Mater. Res. Bull. 47 1432 |
[117] | Kang Y, Zhang Q, Fan C, Hu W, Chen C, Zhang L, Yu F, Tian Y andXu B 2017 J. Alloys Compd. 700 223 |
[118] | Ma Y, Hao Q, Poudel B, Lan Y C, Yu B, Wang D Z, Chen G and RenZ F 2008 Nano Lett. 8 2580 |
[119] | Yan X, Poudel B, Ma Y, Liu W S, Joshi G, Wang H, Lan Y, Wang D,Chen G and Ren Z F 2010 Nano Lett. 10 3373 |
[120] | Shen J J, Zhu T J, Zhao X B, Zhang S N, Yang S H and Yin Z Z 2010 Energy Environ. Sci. 3 1519 |
[121] | Carle M, Pierrat P, Lahalle-Gravier C, Scherrer S and Scherrer H 1995 J. Phys. Chem. Solids 56 201 |
[122] | Liu W S, Zhang Q, Lan Y, Chen S, Yan X, Zhang Q, Wang H, WangD, Chen G and Ren Z 2011 Adv. Energy Mater. 1 577 |
[123] | Wang S, Tan G, Xie W, Zheng G, Li H, Yang J and Tang X 2012 J. Mater. Chem. 22 20943 |
[124] | Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy Environ. Sci. 2 466 |
[125] | Wang S, Yang J, Toll T, Yang J, Zhang W and Tang X 2015 Sci. Rep. 5 10136 |
[126] | Goldsmid H J and Sharp J W 1999 J. Electron. Mater. 28 869 |
[127] | Gibbs Z M, Kim H S, Wang H and Snyder G J 2015 Appl. Phys. Lett. 106 022112 |
[128] | Starý Z, Horák J, Stordeur M and Stölzer M 1988 J. Phys. Chem. Solids 49 29 |
[129] | Slack G A 1995 "New Materials and Performance Limits for Thermoelectric Cooling", in CRC Handbook of Thermoelectrics, Rowe D M,ed. (CRC Press) p. 407 |
[130] | Dean J A and Lange N A 1999 Lange's Handbook of Chemistry (NewYork:McGraw-Hill) Vol. 15 |
[131] | Ortiz B R, Peng H, Lopez A, Parilla P A, Lany S and Toberer E S 2015 Phys. Chem. Chem. Phys. 17 19410 |
[132] | Caillat T, Carle M, Pierrat P, Scherrer H and Scherrer S 1992 J. Phys. Chem. Solids 53 1121 |
[133] | Min Y, Moon G D, Kim B S, Lim B, Kim J S, Kang C Y and Jeong U 2012 J. Am. Chem. Soc. 134 2872 |
[134] | Wiese J R and Muldawer L 1960 J. Phys. Chem. Solids 15 13 |
[135] | Kutasov V A, Lukyanova L N and Vedernikov M V 2005 "Shiftingthe Maximum Figure-of-Merit of (Bi, Sb)2(Te, Se)3 Thermoelectricsto Lower Temperatures", in Thermoelectrics Handbook, Rowe D M,ed. (CRC Press) p. 37 |
[136] | Greenaway D L and Harbeke G 1965 J. Phys. Chem. Solids 26 1585 |
[137] | Sehr R and Testardi L R 1962 J. Phys. Chem. Solids 23 1219 |
[138] | Xiao C, Li Z, Li K, Huang P and Xie Y 2014 Acc. Chem. Res. 47 1287 |
[139] | Sun L P, Lin Z P, Peng J, Weng J, Huang Y Z and Luo Z Q 2014 Sci. Rep. 4 4794 |
[140] | Zhou G and Wang D 2015 Sci. Rep. 5 8099 |
[141] | Sakamoto Y, Hirahara T, Miyazaki H, Kimura S I and Hasegawa S 2010 Phys. Rev. B 81 165432 |
[142] | Scanlon D O, King P D C, Singh R P, de la Torre A, Walker S M, Balakrishnan G, Baumberger F and Catlow C R A 2012 Adv. Mater. 24 2154 |
[143] | Cheng L, Chen Z G, Yang L, Han G, Xu H Y, Snyder G J, Lu G Q andZou J 2013 J. Phys. Chem. C 117 12458 |
[144] | Yang L, Chen Z G, Hong M, Han G and Zou J 2015 ACS Appl. Mater. Interf. 7 23694 |
[145] | Hu L P, Zhu T J, Wang Y G, Xie H H, Xu Z J and Zhao X B 2014 NPG Asia Mater. 6 e88 |
[146] | Birkholz U 1958 "Untersuchung der Intermetallischen Verbindung Bi2Te3 Sowie der Festen Lösungen Bi2-xSb xTe3 und Bi2Te3-xSex Hinsichtlich Ihrer Eignung als Material für Halbleiter-Thermoelemente", Zeitschrift für Naturforschung A, Vol. 13,p. 780 |
[147] | Zhao L D, Zhang B P, Liu W S and Li J F 2009 J. Appl. Phys. 105 023704 |
[148] | Ge Z H, Zhao L D, Wu D, Liu X, Zhang B P, Li J F and He J 2016 Materials Today 19 227 |
[149] | Shen J J, Zhu T J, Zhao X B, Zhang S N, Yang S H and Yin Z Z 2010 Energy Environ. Sci. 3 1519 |
[150] | Xiu F, He L, Wang Y, Cheng L, Chang L T, Lang M, Huang G, Kou X,Zhou Y, Jiang X, Chen Z, Zou J, Shailos A and Wang K L 2011 Nat. Nano 6 216 |
[151] | Hong M, Chen Z G, Yang L and Zou J 2016 Nanoscale 8 8681 |
[152] | Mi J L, Lock N, Sun T, Christensen M, Sondergaard M, Hald P, Hng HH, Ma J and Iversen B B 2010 ACS Nano 4 2523 |
[153] | Lu W G, Ding Y, Chen Y X, Wang Z L and Fang J Y 2005 J. Am. Chem. Soc. 127 10112 |
[154] | Zhang Y, Hu L P, Zhu T J, Xie J and Zhao X B 2013 Cryst. Growth Des. 13 645 |
[155] | Fu J, Song S, Zhang X, Cao F, Zhou L, Li X and Zhang H 2012 CrystEngComm 14 2159 |
[156] | Son J H, Oh M W, Kim B S, Park S D, Min B K, Kim M H and Lee HW 2013 J. Alloys Compd. 566 168 |
[157] | Zheng Y, Zhang Q, Su X, Xie H, Shu S, Chen T, Tan G, Yan Y, TangX, Uher C and Snyder G J 2015 Adv. Energy Mater. 5 1401391 |
[158] | Ivanova L D, Petrova L I, Granatkina Y V, Leontyev V G, Ivanov A S,Varlamov S A, Prilepo Y P, Sychev A M, Chuiko A G and Bashkov IV 2013 Inorg. Mater. 49 120 |
[159] | Ivanova L D, Petrova L I, Granatkina Y V, Kichik S A, Marakushev IS and Mel'nikov A A 2015 Inorg. Mater. 51 741 |
[160] | Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang DJ, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109 |
[161] | Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251 |
[1] | Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys[J]. 中国物理B, 2023, 32(4): 47202-047202. |
[2] | Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency[J]. 中国物理B, 2023, 32(4): 48401-048401. |
[3] | Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Prediction of lattice thermal conductivity with two-stage interpretable machine learning[J]. 中国物理B, 2023, 32(4): 46301-046301. |
[4] | Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure[J]. 中国物理B, 2023, 32(3): 37304-037304. |
[5] | Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Pressure-induced stable structures and physical properties of Sr-Ge system[J]. 中国物理B, 2023, 32(1): 16101-016101. |
[6] | Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots[J]. 中国物理B, 2022, 31(9): 97201-097201. |
[7] | Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x[J]. 中国物理B, 2022, 31(7): 76301-076301. |
[8] | Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties[J]. 中国物理B, 2022, 31(6): 66206-066206. |
[9] | Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). A self-powered and sensitive terahertz photodetection based on PdSe2[J]. 中国物理B, 2022, 31(5): 50701-050701. |
[10] | Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Research status and performance optimization of medium-temperature thermoelectric material SnTe[J]. 中国物理B, 2022, 31(4): 47307-047307. |
[11] | Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Advances in thermoelectric (GeTe)x(AgSbTe2)100-x[J]. 中国物理B, 2022, 31(4): 47401-047401. |
[12] | Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Module-level design and characterization of thermoelectric power generator[J]. 中国物理B, 2022, 31(4): 48502-048502. |
[13] | Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics[J]. 中国物理B, 2022, 31(4): 47203-047203. |
[14] | Nan Lu(陆楠) and Jie Guan(管杰). Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers[J]. 中国物理B, 2022, 31(4): 47201-047201. |
[15] | Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Micro thermoelectric devices: From principles to innovative applications[J]. 中国物理B, 2022, 31(4): 47204-047204. |
|