中国物理B ›› 2018, Vol. 27 ›› Issue (4): 47206-047206.doi: 10.1088/1674-1056/27/4/047206
所属专题: TOPICAL REVIEW — Recent advances in thermoelectric materials and devices
• TOPIC REVIEW—Thermal and thermoelectric properties of nano materials • 上一篇 下一篇
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳)
收稿日期:
2017-11-30
修回日期:
2018-01-03
出版日期:
2018-04-05
发布日期:
2018-04-05
通讯作者:
Shu-Fang Wang
E-mail:sfwang@hbu.edu.cn
基金资助:
Project supported by the National Natural Science Foundation of China (Grant Nos. 51372064 and 61704044) and the Key Project of the Natural Science Foundation of Hebei Province, China (Grant No. E2017201227).
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳)
Received:
2017-11-30
Revised:
2018-01-03
Online:
2018-04-05
Published:
2018-04-05
Contact:
Shu-Fang Wang
E-mail:sfwang@hbu.edu.cn
Supported by:
Project supported by the National Natural Science Foundation of China (Grant Nos. 51372064 and 61704044) and the Key Project of the Natural Science Foundation of Hebei Province, China (Grant No. E2017201227).
摘要:
Thermoelectric (TE) materials have been considered as a strong candidate for recovering the waste heat from industry and vehicles due to the ability to convert heat directly into electricity. Recently, multinary diamond-like chalcogenides (MDLCs), such as CuInTe2, Cu2SnSe3, Cu3SbSe4, Cu2ZnSnSe4, etc., are eco-friendly Pb-free TE materials with relatively large Seebeck coefficient and low thermal conductivity and have aroused intensive research as a popular theme in the TE field. In this review, we summarize the TE performance and device development of MDLCs. The features of crystalline and electronic structure are first analyzed, and then the strategies that have emerged to enhance the TE figure of merits of these materials are illustrated in detail. The final part of this review describes the advance in TE device research for MDLCs. In the outlook, the challenges and future directions are also discussed to promote the further development of MDLCs TE materials.
中图分类号: (Thermoelectric and thermomagnetic effects)
张旦, 白洪昌, 李志亮, 王江龙, 傅广生, 王淑芳. Multinary diamond-like chalcogenides for promising thermoelectric application[J]. 中国物理B, 2018, 27(4): 47206-047206.
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Multinary diamond-like chalcogenides for promising thermoelectric application[J]. Chin. Phys. B, 2018, 27(4): 47206-047206.
[1] | Bell L E 2008 Science 321 1457 |
[2] | DiSalvo F J 1999 Science 285 703 |
[3] | He J and Tritt T M 2017 Science 357 eaak 9997 |
[4] | Shuai J, Mao J, Song S, Zhang Q, Chen G and Ren Z 2017 Mater. Today Phys. 1 74 |
[5] | Xiao C, Li Z, Li K, Huang P and Xie Y 2014 Acc. Chem. Res. 47 1287 |
[6] | Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554 |
[7] | Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66 |
[8] | Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H, Bai S, Yang J, Zhang W and Chen L 2011 J. Am. Chem. Soc. 133 7837 |
[9] | Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Vinayak P D and Kanatzidis M G 2012 Nature 489 414 |
[10] | Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y and Shi J 2017 Nature 549 247 |
[11] | Qiu P, Shi X and Chen L 2016 Energy Storage Materials 3 85 |
[12] | Zhang D, Yang J, Jiang Q, Fu L, Xiao Y, Luo Y and Zhou Z 2016 J. Mater. Chem. A 4 4188 |
[13] | Zhang D, Yang J, Jiang Q, Fu L, Xiao Y, Luo Y and Zhou Z 2016 Mater. Des. 98 150 |
[14] | Xi L, Zhang Y B, Shi X Y, Yang J, Shi X, Chen L D and Zhang W 2012 Phys. Rev. B 86 155201 |
[15] | Contreras M A, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F and Noufi R 1999 Prog. Photovoltaics Res. Appl. 7 311 |
[16] | Mousa N H, El-bahay M M, Abdelghany A and Abou El Ela A H 1996 Phys. Chem. Liq. 33 113 |
[17] | Kuhn B, Kaefer W, Fess K, Friemelt K, Turner C, Wendl M and Bucher E 1997 Phys. Stat. Sol. A 162 661 |
[18] | Endo S, Sudo I and Irie T 1971 Jpn. J. Appl. Phys. 10 218 |
[19] | Liu M L, Huang F Q, Chen L D and Chen I W 2009 Appl. Phys. Lett. 94 202103 |
[20] | Shi X Y, Huang F Q, Liu M L and Chen L D 2009 Appl. Phys. Lett. 94 122103 |
[21] | Liu R, Xi L, Liu H, Shi X, Zhang W and Chen L 2012 Chem. Commun. 48 3818 |
[22] | Li Y, Meng Q, Deng Y, Zhou H, Gao Y, Li Y, Yang J and Cui J 2012 Appl. Phys. Lett. 100 231903 |
[23] | Zhang J, Liu R, Cheng N, Zhang Y, Yang J, Uher C, Shi X, Chen L and Zhang W 2014 Adv. Mater. 26 3848 |
[24] | Carr W D and Morelli D T 2015 J. Alloys Compd. 630 277 |
[25] | Luo Y, Yang J, Jiang Q, Li W, Xiao Y, Fu L, Zhang D, Zhou Z and Cheng Y 2015 Nano Energy 18 37 |
[26] | Luo Y, Yang J, Jiang Q, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y and He X 2016 Adv. Energy Mater. 6 1600007 |
[27] | Liu R, Qin Y, Cheng N, Zhang J, Shi X, Grin Y and Chen L 2016 Inorg. Chem. Front. 3 1167 |
[28] | Luo Y, Jiang Q, Yang J, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X and Li X 2017 Nano Energy 32 80 |
[29] | Liu, R, Chen H, Zhao K, Qin Y, Jiang B, Zhang T, Sha G, Shi X, Uher C, Zhang W and Chen L 2017 Adv. Mater. 29 1702712 |
[30] | Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder J F, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H and Yamanaka S 2012 Adv. Mater. 24 3622 |
[31] | Cui J, Li Y, Du Z, Meng Q and Zhou H 2013 J. Mater. Chem. A 1 677 |
[32] | Zhang J, Qin X, Li D, Xin H, Song C, Li L, Zhu X, Wang Z, Guo G and Wang L 2014 J. Mater. Chem. A 2 2891 |
[33] | Yusufu A, Kurosaki K, Kosuga A, Sugahara T, Ohishi Y, Muta H and Yamanaka S 2011 Appl. Phys. Lett. 99 061902 |
[34] | Ying P Z, Zhou H, Gao Y L, Li Y Y, Li Y P, Lian X L and Cui J L 2012 Key Eng. Mate. 519 188 |
[35] | Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X and Chen L 2017 Adv. Sci. 4 1700727 |
[36] | Liang D, Ma R, Jiao S, Pang G and Feng S 2012 Nanoscale 4 6265 |
[37] | Tsujii N and Mori T 2013 Appl. Phys. Express 6 043001 |
[38] | Li J, Tan Q and Li J F 2013 J. Alloys Compd. 551 143 |
[39] | Li Y, Zhang T, Qin Y, Day T, Jeffrey S G, Shi X and Chen L 2014 J. Appl. Phys. 116 203705 |
[40] | Berthebaud D, Lebedev O I and Maignan A 2015 J. Materiomics 1 68 |
[41] | Carr W D and Morelli D T 2016 J. Electronic Mater. 45 1346 |
[42] | Lefévre R, Berthebaud D, Mychinko M Y, Lebedev O I, Mori T, Gascoin F and Maignan A 2016 RSC Adv. 6 55117 |
[43] | Xie H, Su X, Zheng G, Zhu T, Yin K, Yan Y, Uher C, Kanatzidis M G and Tang X 2017 Adv. Energy Mater. 7 1601299 |
[44] | Xie H, Su X, Yan Y, Liu W, Chen L, Fu J, Yang Y, Uher C and Tang X 2017 NPG Asia Mater. 9 e390 |
[45] | Tan Q, Sun W, Li Z and Li J F 2016 J. Alloys Compd. 672 558 |
[46] | Zhao H, Xu X, Li C, Zhang R, Huang R, Lv Y, Li D, Hu X, Pan L and Wang Y 2017 J. Mater. Chem. A 5 23267 |
[47] | Cho J Y, Shi X, Salvador J R, Meisner G P, Yang J, Wang H, Wereszczak A A, Zhou X and Uher C 2011 Phys. Rev. B 84 085207 |
[48] | Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater. 22 6029 |
[49] | Li, Y, Liu G, Cao T, Liu L, Li J, Chen K, Li L, Han Y and Zhou M 2016 Adv. Funct. Mater. 26 6025 |
[50] | Chen K, Du B, Bonini N, Weber C, Yan H, and Reece M J 2016 J. Phys. Chem. C 120 27135 |
[51] | Yang C, Huang F, Wu L and Xu K 2011 J. Phy. D:Appl. Phys. 44 295404 |
[52] | Skoug E J, Cain J D and Morelli D T 2011 Appl. Phys. Lett. 98 261911 |
[53] | Li X Y, Li D, Xin H X, Zhang J, Song C J and Qin X Y 2013 J. Alloys Compd. 561 105 |
[54] | Li D, Li R, Qin X Y, Zhang J, Song C J, Wang L and Xin X 2013 CrystEngComm 15 7166 |
[55] | Li D, Li R, Qin X Y, Song C J, Xin H X, Wang L, Zhang J, Guo G L, Zou T H, Liu Y F and Zhu X G 2014 Dalton Trans. 43 1888 |
[56] | Wei T R, Wang H, Gibbs Z M, Wu C F, Snyder G J and Li J F 2014 J. Mater. Chem. A 2 13527 |
[57] | Chang C H, Chen C L, Chiu W T and Chen Y Y 2017 Mater. Lett. 186 227 |
[58] | Zhang D, Yang J, Jiang Q, Zhou Z, Li X, Ren Y, Xin J, Basit A, He X, Chu W and Hou J 2017 J. Alloys Compd. 724 597 |
[59] | Liu Y, García G, Ortega S, Cadavid D, Palacios P, Lu J, Ibáñez M, Xi L, Roo J D, López A M, Martí-Sánchez S, Cabezas I, Mata M, Luo Z, Dun C, Dobrozhan O, Carroll D L, Zhang W, Martins J, Kovalenko M V, Arbiol J, Noriega G, Song J, Wahnón P and Cabot A 2017 J. Mater. Chem. A 5 2592 |
[60] | Zhang D, Yang J, Jiang Q, Zhou Z, Li X, Xin J, Basit A, Ren Y, He X, Chu W and Hou J 2017 ACS Appl. Mater. Interfaces 9 28558 |
[61] | Xiao C, Li K, Zhang J, Tong W, Liu Y, Li Z, Huang P, Pan B, Su H and Xie Y 2014 Mater. Horiz. 1 81 |
[62] | Dong Y, Wang H, Nolas G S 2014 Phys. Status Solidi-RRL 8 61 |
[63] | Chen D, Zhao Y, Chen Y, Wang Y, Zhou J and Liang Z 2015 ACS Appl. Mater. Interfaces 7 24403 |
[64] | Zeier W G, LaLonde A, Gibbs Z M, Heinrich C P, Panthöfer M, Snyder G J and Tremel W 2012 J. Am. Chem. Soc. 134 7147 |
[65] | Liu M L, Chen I W, Huang F Q and Chen L D 2009 Adv. Mater. 21 3808 |
[66] | Song Q, Qiu P, Hao F, Zhao K, Zhang T, Ren D, Shi X and Chen L 2016 Adv. Electron. Mater. 2 1600312 |
[67] | Zhang D, Yang J, Jiang Q, Zhou Z, Li X, Xin J, Basit A, Ren Y and He X 2017 Nano Energy 36 156 |
[68] | Jaffe J E and Zunger A 1983 Phys. Rev. B 28 5822 |
[69] | Jaffe J E and Zunger A 1984 Phys. Rev. B 29 1882 |
[70] | Zhang Y, Xi L, Wang Y, Zhang J, Zhang P and Zhang W 2015 Comp. Mater. Sci. 108 239 |
[71] | Chen S, Gong X G, Walsh A and Wei S H 2009 Appl. Phys. Lett. 94 041903 |
[72] | Zhang Y, Zhang J, Gao W, Abtew T A, Wang Y, Zhang P and Zhang W 2013 J. Chem. Phys. 139 184706 |
[73] | Zou D, Nie G, Li Y, Xu Y, Lin J, Zheng H and Li J 2015 RSC Adv. 5 24908 |
[74] | Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141 |
[75] | Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123 |
[76] | Wang H, Cao X, Takagiwa Y and Snyder G J 2015 Mater. Horiz. 2 323 |
[77] | Huang T, Yan Y, Peng K, Tang X, Guo L, Wang R, Lu X, Zhou X and Wang G 2017 J. Alloys Compd. 723 708 |
[78] | Luo P, You L, Yang J, Xing J, Zhang J, Wang C, Zhao X, Luo J and Zhang W 2017 Chin. Phys. B 26 097201 |
[79] | Yang J, Chen S, Du Z, Liu X and Cui J 2014 Dalton Trans. 43 15228 |
[80] | Shen J, Chen Z, Lin S, Zheng L, Li W and Pei Y 2016 J. Mater. Chem. C 4 209 |
[81] | Chen S, Yang J H, Gong X G, Walsh A and Wei S H 2010 Phys. Rev. B 81 245204 |
[82] | Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601 |
[83] | Fu C, Zhu T, Pei Y, Xie H, Wang H, Snyder G J, Liu Y, Liu Y and and Zhao X 2014 Adv. Energy Mater. 4 1400600 |
[84] | Tang Y, Gibbs Z M, Agapito L A, Li G, Kim H S, Nardelli M B, Curtarolo S and Snyder G J 2015 Nat. Mater. 14 1223 |
[85] | Banik A, Shenoy U S, Anand S, Waghmare U V and Biswas K 2015 Chem. Mater. 27 581 |
[86] | Zeier W G, Zhu H, Gibbs Z M, Ceder G, Tremel W and Snyder G J 2014 J. Mater. Chem. C 2 10189 |
[87] | Wang Y, Rogado N S, Cava R J and Ong N P 2003 Nature 423 425 |
[88] | Limelette P, Hébert S, Hardy V, Frésard R, Simon C and Maignan A 2006 Phys. Rev. Lett. 97 046601 |
[89] | Yao J, Takas N J, Schliefert M L, Paprocki D S, Blanchard P E, Gou H, Mar A, Exstrom C L, Darveau S A, Poudeu P F P and Aitken J A 2011 Phys. Rev. B 84 075203 |
[90] | Chen D, Zhao Y, Chen Y, Lu T, Wang Y, Zhou J and Liang Z 2016 Adv. Electron. Mater. 2 1500473 |
[91] | Ahmed F, Tsujii N and Mori T 2017 J. Mater. Chem. A 5 7545 |
[92] | Mori T 2017 Small 13 1702013 |
[93] | Brown S R, Toberer E S, Ikeda T, Cox C A, Gascoin F, Kauzlarich S M and Snyder G J 2008 Chem. Mater. 20 3412 |
[94] | Shen J, Zhang X, Chen Z, Lin S, Li J, Li W, Li S, Chen Y and Pei Y 2017 J. Mater. Chem. A 5 5314 |
[95] | Shen J, Zhang X, Lin S, Li J, Chen Z, Li W and Pei Y 2016 J. Mater. Chem. A 4 15464 |
[96] | Heinrich C P, Day T W, Zeier W G, Snyder G J and Tremel W 2014 J. Am. Chem. Soc. 136 442 |
[97] | Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 12727 |
[98] | Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043 |
[99] | Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D and Chen X 2008 Science 320 634 |
[100] | Finefrock S W, Zhang G, Bahk J H, Fang H, Yang H, Shakouri A and Wu Y 2014 Nano Lett. 14 3466 |
[101] | Joshi G, Yan X, Wang H, Liu W, Chen G and Ren Z 2011 Adv. Energy Mater. 1 643 |
[102] | Jiang Q, Yang J, Liu Y and He H 2016 J. Adv. Dielectr. 6 1630002 |
[103] | Ibáñez M, Cadavid D, Anselmi-Tamburini U, Zamani R, Gorsse S, Li W, López A M, Morante J R, Arbiol J and Cabot A 2013 J. Mater. Chem. A 1 1421 |
[104] | Peng J, Fu L, Liu Q, Liu M, Yang J, Hitchcock D, Zhou M and He J 2014 J. Mater. Chem. A 2 73 |
[105] | Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414 |
[106] | Moshwan R, Yang L, Zou J and Chen Z G 2017 Adv. Funct. Mater. 27 1703278 |
[107] | Zhang J, Qin X, Li D, Liu Y, Li Y, Song C Xin H and Zhu X 2016 Appl. Phys. Lett. 108 073902 |
[108] | Chen H, Yang C, Liu H, Zhang G, Wan D and Huang F 2013 CrystEngComm 15 6648 |
[109] | Li Z, Pradeep K G, Deng Y, Raabe D and Tasan C C 2016 Nature 534 227 |
[110] | Ye Y F, Wang Q, Lu J, Liu C T and Yang Y 2016 Mater. Today 19 349 |
[111] | Shafeie S, Guo S, Hu Q, Fahlquist H, Erhart P and Palmqvist A 2015 J. Appl. Phys. 118 184905 |
[112] | Zhao F, Wang H, Wu Y, Liu X and Lu Z 2017 Mater. Res. Lett. 5 187 |
[113] | Moure A, Rull-Bravo M, Abad B, Del Campo A, Rojo M M, Aguirre M H, Jacquot A, Fernandez J F and Martin-Gonzalez M 2017 Nano Energy 31 393 |
[114] | Jiang Q, Yang J, Xin J, Zhou Z, Zhang D and Yan H 2017 J. Alloys Compd. 694 864 |
[115] | Cederkrantz D, Farahi N, Borup K A, Iversen B B, Nygren M and Palmqvist A E C 2012 J. Appl. Phys. 111 023701 |
[116] | Zhou Z, Yang J, Jiang Q, Zhang D, Xin J, Li X, Ren Y and He X 2017 J. Am. Ceram. Soc. 100 5723 |
[117] | Dou Y C, Qin X Y, Li D, Li L L, Zou T H, and Wang Q Q 2013 J. Appl. Phys. 114 044906 |
[118] | Nandihalli N, Guo Q, Gorsse S, Khan A U, Mori T and Kleinke H 2016 Eur. J. Inorg. Chem. 6 853 |
[119] | Zhou X, Wang G, Guo L, Chi H, Wang G, Zhang Q, Chen C, Thompson T, Sakamoto J, Dravid V P, Cao G and Uher C 2014 J. Mater. Chem. A 2 20629 |
[120] | Tan G, Shi F, Hao S, Zhao L D, Chi H, Zhang X, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2016 Nat. Commun. 7 12167 |
[121] | Zhang J, Wu D, He D, Feng D, Yin M, Qin X and He J 2017 Adv. Mater. 29 1703148 |
[122] | Fu L, Yin M, Wu D, Li W, Feng D, Huang L and He J 2017 Energy. Environ. Sci. 10 2030 |
[123] | Meng X, Liu Z, Cui B, Qin D, Geng H, Cai W, Fu L, He J, Ren Z and Sui J 2017 Adv. Energy Mater. 7 1602582 |
[124] | Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109 |
[125] | Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, Huang M, Snyder G J and Pei Y 2017 Adv. Mater. 29 1606768 |
[126] | Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G and Ren Z 2013 Proc. Natl. Acad. Sci. USA 110 13261 |
[127] | Tan G, Shi F, Hao S, Chi H, Zhao L D, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 5100 |
[128] | Yang H, Bahk J H, Day T, Mohammed A M, Snyder G J, Shakouri A and Wu Y 2015 Nano lett. 15 1349 |
[129] | Xu B, Agne M T, Feng T, Chasapis T C, Ruan X, Zhou Y, Zheng H, Bahk J H, Kanatzidis M G, Snyder G J and Wu Y 2017 Adv. Mater. 29 1605140 |
[130] | Cabrera H, Zumeta-Dubé I, Korte D, Grima-Gallardo P, Alvarado F, Aitken J A, Brant J A, Zhang J H, Calderónc A, Marínc E, Aguilar-Frutis A, Erazo J E, Perez-Cappe E and Frankod M 2015 J. Alloys Compd. 651 490 |
[131] | Kumar A, Dhama P, Saini D S and Banerji P 2016 RSC Adv. 6 5528 |
[132] | Chakrabarti D J and Laughlin D E 1983 Bull. Alloys Pha. Diagr. 4 254 |
[133] | Dennler G, Chmielowski R, Jacob S, Capet F, Roussel P, Zastrow S, Nielsch K, Opahle I and Madsen G K 2014 Adv. Energy Mater. 4 1301581 |
[1] | Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys[J]. 中国物理B, 2023, 32(4): 47202-047202. |
[2] | Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency[J]. 中国物理B, 2023, 32(4): 48401-048401. |
[3] | Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Prediction of lattice thermal conductivity with two-stage interpretable machine learning[J]. 中国物理B, 2023, 32(4): 46301-046301. |
[4] | Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure[J]. 中国物理B, 2023, 32(3): 37304-037304. |
[5] | Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Pressure-induced stable structures and physical properties of Sr-Ge system[J]. 中国物理B, 2023, 32(1): 16101-016101. |
[6] | Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots[J]. 中国物理B, 2022, 31(9): 97201-097201. |
[7] | Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x[J]. 中国物理B, 2022, 31(7): 76301-076301. |
[8] | Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties[J]. 中国物理B, 2022, 31(6): 66206-066206. |
[9] | Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). A self-powered and sensitive terahertz photodetection based on PdSe2[J]. 中国物理B, 2022, 31(5): 50701-050701. |
[10] | Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Research status and performance optimization of medium-temperature thermoelectric material SnTe[J]. 中国物理B, 2022, 31(4): 47307-047307. |
[11] | Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Advances in thermoelectric (GeTe)x(AgSbTe2)100-x[J]. 中国物理B, 2022, 31(4): 47401-047401. |
[12] | Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Module-level design and characterization of thermoelectric power generator[J]. 中国物理B, 2022, 31(4): 48502-048502. |
[13] | Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics[J]. 中国物理B, 2022, 31(4): 47203-047203. |
[14] | Nan Lu(陆楠) and Jie Guan(管杰). Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers[J]. 中国物理B, 2022, 31(4): 47201-047201. |
[15] | Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Micro thermoelectric devices: From principles to innovative applications[J]. 中国物理B, 2022, 31(4): 47204-047204. |
|