中国物理B ›› 2018, Vol. 27 ›› Issue (10): 100304-100304.doi: 10.1088/1674-1056/27/10/100304
• SPECIAL TOPIC—Recent advances in thermoelectric materials and devices • 上一篇 下一篇
Ya Fan(范亚), Jia-Fu Wang(王甲富), Hua Ma(马华), Yong-Feng Li(李勇峰), Ming-De Feng(冯明德), Shao-Bo Qu(屈绍波)
Ya Fan(范亚), Jia-Fu Wang(王甲富), Hua Ma(马华), Yong-Feng Li(李勇峰), Ming-De Feng(冯明德), Shao-Bo Qu(屈绍波)
摘要:
Low profile and light weight are very important for practical applications of a spoof surface plasmon polariton (SSPP) coupler, especially at low frequencies. In this paper, we propose and design an ultra-thin, light-weight SSPP coupler based on broadside coupled split ring resonators (BC-SRRs). The size of BC-SRR can be far less than λ/100 and can extremely well control the reflective phases within a subwavelength thickness. Due to the broadside capacitive coupling, the electrical size of BC-SRR is dramatically reduced to guarantee the ultra-thin thickness of the SSPP coupler. The weight of the SSPP coupler is reduced by a low occupation ratio of BC-SRR in the unit cell volume. As an example, a C-band SSPP coupler composed of phase gradient BC-SRRs is designed, fabricated, and measured. Due to the ultra-small size and low occupation ratio of BC-SRRs, the thickness of the coupler is λ/12 and the surface density is only 0.98 kg/m2. Both simulation and experiment results verify that the coupler can achieve high-efficiency SPP coupling at 5.27 GHz under normal incidence.
中图分类号: (Phases: geometric; dynamic or topological)