中国物理B ›› 2016, Vol. 25 ›› Issue (9): 94214-094214.doi: 10.1088/1674-1056/25/9/094214

• SPECIAL TOPIC—Physical research in liquid crystal • 上一篇    下一篇

A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics

Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽)   

  1. 1. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
    2. University of Chinese Academy of Sciences, Beijing 100039, China
  • 收稿日期:2016-05-18 出版日期:2016-09-05 发布日期:2016-09-05
  • 通讯作者: Li-Fa Hu E-mail:hulifa@ciomp.ac.cn
  • 基金资助:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics

Bin He(何斌)1,2, Li-Fa Hu(胡立发)1, Da-Yu Li(李大禹)1, Huan-Yu Xu(徐焕宇)1, Xing-Yun Zhang(张杏云)1, Shao-Xin Wang(王少鑫)1, Yu-Kun Wang(王玉坤)1, Cheng-Liang Yang(杨程亮)1, Zhao-Liang Cao(曹召良)1, Quan-Quan Mu(穆全全)1, Xing-Hai Lu(鲁兴海)1, Li Xuan(宣丽)1   

  1. 1. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
    2. University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2016-05-18 Online:2016-09-05 Published:2016-09-05
  • Contact: Li-Fa Hu E-mail:hulifa@ciomp.ac.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194) and State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

摘要: Adaptive optics (AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present. To enlarge the imaging field of view (FOV), multi-laser guide stars (LGSs) are currently being investigated and used for the large aperture optical telescopes. LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system. We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation. By comparing with the conventional average method, the proposed method reduces the root mean square (RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV. We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO.

关键词: laser guide star, adaptive optics, phase reconstruction, liquid crystal wavefront corrector

Abstract: Adaptive optics (AO) systems are widespread and considered as an essential part of any large aperture telescope for obtaining a high resolution imaging at present. To enlarge the imaging field of view (FOV), multi-laser guide stars (LGSs) are currently being investigated and used for the large aperture optical telescopes. LGS measurement is necessary and pivotal to obtain the cumulative phase distortion along a target in the multi-LGSs AO system. We propose a high precision phase reconstruction algorithm to estimate the phase for a target with an uncertain turbulence profile based on the interpolation. By comparing with the conventional average method, the proposed method reduces the root mean square (RMS) error from 130 nm to 85 nm with a 30% reduction for narrow FOV. We confirm that such phase reconstruction algorithm is validated for both narrow field AO and wide field AO.

Key words: laser guide star, adaptive optics, phase reconstruction, liquid crystal wavefront corrector

中图分类号:  (Remote sensing; LIDAR and adaptive systems)

  • 42.68.Wt
42.66.Lc (Vision: light detection, adaptation, and discrimination) 42.70.Df (Liquid crystals)