中国物理B ›› 2012, Vol. 21 ›› Issue (1): 16803-016803.doi: 10.1088/1674-1056/21/1/016803
杨平, 李培, 张立强, 王晓亮, 王欢, 宋喜福, 谢方伟
Yang Ping(杨平)†, Li Pei(李培), Zhang Li-Qiang(张立强), Wang Xiao-Liang(王晓亮), Wang Huan(王欢), Song Xi-Fu(宋喜福), and Xie Fang-Wei(谢方伟)
摘要: The lattice, the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by first-principles calculations. The results show that the lattice constants change linearly with stress. Band gaps are broadened linearly as the uniaxial compressive stress increases. The change of band gap for n-type ZnO comes mainly from the contribution of stress in the c-axis direction, and the reason for band gap of n-type ZnO changing with stress is also explained. The calculated results of optical properties reveal that the imaginary part of the dielectric function decreases with the increase of uniaxial compressive stress at low energy. However, when the energy is higher than 4.0 eV, the imaginary part of the dielectric function increases with the increase of stress and a blueshift appears. There are two peaks in the absorption spectrum in an energy range of 4.0-13.0 eV. The stress coefficient of the band gap of n-type ZnO is larger than that of pure ZnO, which supplies the theoretical reference value for the modulation of the band gap of doped ZnO.
中图分类号: (Mechanical and acoustical properties)