中国物理B ›› 2010, Vol. 19 ›› Issue (3): 30515-030515.doi: 10.1088/1674-1056/19/3/030515
朱会宾1, 崔宝同1, 邱芳2
收稿日期:
2009-06-06
修回日期:
2009-09-14
出版日期:
2010-03-15
发布日期:
2010-03-15
基金资助:
Zhu Hui-Bin(朱会宾)a)†,Qiu Fang(邱芳)a)b), and Cui Bao-Tong(崔宝同)a)
Received:
2009-06-06
Revised:
2009-09-14
Online:
2010-03-15
Published:
2010-03-15
Supported by:
摘要: In this paper, the problem of generalised synchronisation of two different chaotic systems is investigated. Some less conservative conditions are derived using linear matrix inequality other than existing results. Furthermore, a simple adaptive control scheme is proposed to achieve the generalised synchronisation of chaotic systems. The proposed method is simple and easy to implement in practice and can be applied to secure communications. Numerical simulations are also given to demonstrate the effectiveness and feasibility of the theoretical analysis.
中图分类号: (Synchronization; coupled oscillators)
朱会宾, 邱芳, 崔宝同. Improvement on generalised synchronisation of chaotic systems[J]. 中国物理B, 2010, 19(3): 30515-030515.
Zhu Hui-Bin(朱会宾),Qiu Fang(邱芳), and Cui Bao-Tong(崔宝同). Improvement on generalised synchronisation of chaotic systems[J]. Chin. Phys. B, 2010, 19(3): 30515-030515.
[1] | Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University) |
[2] | Zhang S H and Shen K 2004 Chin. Phys. 13 1215 |
[3] | Mu J, Tao C and Du G H 2003 Chin. Phys. 12 381 |
[4] | Hu M F and Xu Z Y 2007 Chin. Phys. 16 3231 |
[5] | Boccaletti S, Kurths J, Osipov G, Valladares D L andZhou C S 2002 Phys. Rep. 366 1 |
[6] | Zhang J S and Xiao X C 2001 Acta Phys. Sin. 50 2121 (in Chinese) |
[7] | Rulkov N F, Vorontsov M A and Illing L 2002 Phys. Rev. Lett. 89 277905 |
[8] | Schafer C, Rosenblum M G, Kurths J and Abel H 1998 Nature 392 239 |
[9] | Landsman A S and Schwartz I B 2007 Phys. Rev. E 75 026201 |
[10] | Xiao Y Z and Xu W 2007 Chin. Phys. 16 1597 |
[11] | Wang Q Y, Lu Q S and Wang H X 2005 Chin. Phys. 14 189 |
[12] | Xiao Y Z, Xu W, Li X C and Tang S F 2008 Chin. Phys. B 17 80 |
[13] | Rulkov N F, Sushchik M M, Tsimring L S and Abarbanel H 1995 Phys. Rev. E51 980 |
[14] | Chen Z, Lin W and Zhou J 2007 Chaos 17023106 |
[15] | Rulkov N F and Lewis C T 2001 Phys. Rev. E 63 065204 |
[16] | Meng J and Wang X Y 2008 Chaos 18 023108 |
[17] | Li G H 2007 Chin. Phys. 16 2608 |
[18] | Jia Z, Lu J A, Deng G M and Zhang Q J 2007 Chin. Phys. 16 1246 |
[19] | Hramov A E and Koronovskii A A 2005 Phys. Rev. E 71 067201 |
[20] | Hramov A E, Koronovskii A A and Moskalenko O I 2005 Europ.Lett. 72 901 |
[21] | Li D and Zheng Z G 2008 Chin. Phys. B 17 4009 |
[22] | Zhang H, Ma X K, Yang Yu and Xu C D 2005 Chin. Phys. 14 86 |
[23] | Zhang R, Xu Z Y and He X M 2007 Chin. Phys. 16 1912 |
[24] | Zhang S H and Shen K 2002 Chin. Phys. 11 894 |
[25] | Zhang R X and Yang S P 2008 Chin. Phys. B 174073 |
[26] | Yu S M, Ma Z G, Qiu S S, Peng S G and Lin Q H 2004 Chin. Phys. 13 317 |
[27] | Zhou P and Cao Y X 2007 Chin. Phys. 16 2903 |
[28] | Senthilkumar D V, Lakshmanan M and Kurths J 2006 Phys.Rev. E 74 035205 |
[29] | Yang X L and Xu W 2008 Chin. Phys. B 17 2004 |
[30] | Han F, Lu Q S, Wiercigroch M and Ji Q B 2009 Chin. Phys. B18 482 |
[31] | Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 784193 |
[32] | Zhang H G, Ma T D, Yu W and Fu J 2008 Chin. Phys. B 17 3616 |
[33] | Zhou C S and Kurths J 2002 Phys. Rev. Lett. 23 0602 |
[34] | Hramova A E, Koronovskiia A A 2005 Physica D 206 252 |
[35] | Zhu H B and Cui B T 2007 Chaos 17 043122 |
[36] | Sun Z K, Xu W and Yang X L 2007 Chin. Phys. 16 3226 |
[37] | Yang T and Chua L O 1997 IEEE Trans. Circ. Syst. I44 976 |
[38] | Niu Y J, Xu W, Rong H W, Ma L and Feng J L 2009 Acta Phys.Sin. 58 2983 (in Chinese) |
[39] | Fradkov A L and Pogromsky A Y 1996 IEEE Trans. Circ. Syst. I43 907 |
[40] | Hu J and Zhang Q J 2008 Chin. Phys. B 17 503 |
[41] | Lou X Y and Cui B T 2008 Chin. Phys. B 17 520 |
[42] | Gao B J and Lu J A 2007 Chin. Phys. 16 666 |
[43] | Li C D, Liao X F and Huang T W 2007 Chaos 17 013103 |
[44] | ? ochowski M 2000 Physica D 145 181 |
[45] | Agiza H N and Yassen M T 2001 Phys. Lett. A 278 191 |
[46] | Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821 |
[47] | Huang D B 2005 Phys. Rev. E 71 037203 |
[48] | Hunt B R, Ott E and Yorke J A 1997 Phys. Rev. E 55 4029 |
[49] | Cuomo K M and Oppenheim A V 1993 Phys. Rev. Lett. 71 65 |
[50] | van Wiggeren G D 1998 Phys. Rev. Lett. 81 3547 |
[51] | Parlitz U, Kocarev L, Stojanovski T and Preckel H 1996 Phys. Rev. E 53 4351 |
[52] | Zhan M, Wang X G, Gong X F, Wei G W and Lai C H 2003 Phys. Rev. E 68 036208 |
[53] | Min L Q, Zhang X D and Chen G R 2005 Int. J. Bifurcation Chaos Appl. Sci.Eng. 15 119 |
[54] | Kocarev L and Parlitz U 1996 Phys. Rev. Lett. 76 1816 |
[55] | Cui B T, Chen J and Lou X Y 2008 Chin. Phys. B171670 |
[56] | Boccaletti S and Valladares1 D L 2000 Phys. Rev.E 62 7497 |
[1] | Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Influence of coupling asymmetry on signal amplification in a three-node motif[J]. 中国物理B, 2023, 32(1): 10504-010504. |
[2] | Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application[J]. 中国物理B, 2022, 31(11): 110501-110501. |
[3] | Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field[J]. 中国物理B, 2022, 31(10): 100501-100501. |
[4] | Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control[J]. 中国物理B, 2022, 31(10): 100504-100504. |
[5] | Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Improved functional-weight approach to oscillatory patterns in excitable networks[J]. 中国物理B, 2022, 31(9): 90502-090502. |
[6] | Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Power-law statistics of synchronous transition in inhibitory neuronal networks[J]. 中国物理B, 2022, 31(8): 80505-080505. |
[7] | Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Synchronization in multilayer networks through different coupling mechanisms[J]. 中国物理B, 2022, 31(4): 48901-048901. |
[8] | Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Robust H∞ state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks[J]. 中国物理B, 2022, 31(2): 20503-020503. |
[9] | Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Explosive synchronization: From synthetic to real-world networks[J]. 中国物理B, 2022, 31(2): 20504-020504. |
[10] | Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex[J]. 中国物理B, 2022, 31(2): 28901-028901. |
[11] | Dong-Jie Qian(钱冬杰). Explosive synchronization in a mobile network in the presence of a positive feedback mechanism[J]. 中国物理B, 2022, 31(1): 10503-010503. |
[12] | Yan-Liang Jin(金彦亮), Run-Zhu Guo(郭润珠), Xiao-Qi Yu(于晓琪), and Li-Quan Shen(沈礼权). Explosive synchronization of multi-layer complex networks based on inter-layer star network connection[J]. 中国物理B, 2021, 30(12): 120505-120505. |
[13] | Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay[J]. 中国物理B, 2021, 30(12): 120503-120503. |
[14] | Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control[J]. 中国物理B, 2021, 30(12): 120512-120512. |
[15] | Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Adaptive synchronization of chaotic systems with less measurement and actuation[J]. 中国物理B, 2021, 30(10): 100503-100503. |
|