中国物理B ›› 2024, Vol. 33 ›› Issue (9): 94301-094301.doi: 10.1088/1674-1056/ad57ad
Qingbang Han(韩庆邦)1, Zhipeng Liu(刘志鹏)1, Cheng Yin(殷澄)1,†, Simeng Wu(吴思梦)1, Yinlong Luo(罗寅龙)2, Zixin Yang(杨子鑫)2, Xiuyang Pang(庞修洋)2, Yiqiu Wang(王溢秋)1, Xuefen Kan(阚雪芬)3, Yuqiu Zhang(张雨秋)2, Qiang Yu(俞强)2,4, and Jian Wu(吴坚)2,‡
Qingbang Han(韩庆邦)1, Zhipeng Liu(刘志鹏)1, Cheng Yin(殷澄)1,†, Simeng Wu(吴思梦)1, Yinlong Luo(罗寅龙)2, Zixin Yang(杨子鑫)2, Xiuyang Pang(庞修洋)2, Yiqiu Wang(王溢秋)1, Xuefen Kan(阚雪芬)3, Yuqiu Zhang(张雨秋)2, Qiang Yu(俞强)2,4, and Jian Wu(吴坚)2,‡
摘要: Orbital angular momentum (OAM) conversion is critical in understanding interactions between a structural sound field and a planar lattice. Herein, we explore the evolution of a monochromatic acoustic vortex beam (AVB) that is scattered by a phononic crystal (PnC) or a correlated random lattice. The phenomenon is ascribed to the enhanced orbit-orbit angular momentum coupling induced by the band structure. By modifying the coupling condition, accurate and continuous micro-manipulation of AVBs can be achieved, including the transverse/lateral gravity shift, the dynamics of the phase singularities, and the spatial distribution of acoustic pressure, etc. This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes, and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.
中图分类号: (Structural acoustics and vibration)