中国物理B ›› 2024, Vol. 33 ›› Issue (5): 56301-056301.doi: 10.1088/1674-1056/ad2dcc

所属专题: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas

• • 上一篇    下一篇

Dynamic response of a thermal transistor to time-varying signals

Qinli Ruan(阮琴丽), Wenjun Liu(刘文君), and Lei Wang(王雷)†   

  1. Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, and Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
  • 收稿日期:2024-01-12 修回日期:2024-02-07 接受日期:2024-02-28 出版日期:2024-05-20 发布日期:2024-05-20
  • 通讯作者: Lei Wang E-mail:phywanglei@ruc.edu.cn
  • 基金资助:
    Project supported by the National Natural Science Foundation of China (Grant No. 12075316), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 21XNH091) (Q.R.).

Dynamic response of a thermal transistor to time-varying signals

Qinli Ruan(阮琴丽), Wenjun Liu(刘文君), and Lei Wang(王雷)†   

  1. Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, and Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
  • Received:2024-01-12 Revised:2024-02-07 Accepted:2024-02-28 Online:2024-05-20 Published:2024-05-20
  • Contact: Lei Wang E-mail:phywanglei@ruc.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No. 12075316), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 21XNH091) (Q.R.).

摘要: Thermal transistor, the thermal analog of an electronic transistor, is one of the most important thermal devices for microscopic-scale heat manipulating. It is a three-terminal device, and the heat current flowing through two terminals can be largely controlled by the temperature of the third one. Dynamic response plays an important role in the application of electric devices and also thermal devices, which represents the devices' ability to treat fast varying inputs. In this paper, we systematically study two typical dynamic responses of a thermal transistor, i.e., the response to a step-function input (a switching process) and the response to a square-wave input. The role of the length $L$ of the control segment is carefully studied. It is revealed that when $L$ is increased, the performance of the thermal transistor worsens badly. Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on $L$ quite well, which agrees with our analytical expectation. However, the detailed power exponents deviate from the expected values noticeably. This implies the violation of the conventional assumptions that we adopt.

关键词: phonon, phononics, thermal transistor, dynamic response, heat conduction

Abstract: Thermal transistor, the thermal analog of an electronic transistor, is one of the most important thermal devices for microscopic-scale heat manipulating. It is a three-terminal device, and the heat current flowing through two terminals can be largely controlled by the temperature of the third one. Dynamic response plays an important role in the application of electric devices and also thermal devices, which represents the devices' ability to treat fast varying inputs. In this paper, we systematically study two typical dynamic responses of a thermal transistor, i.e., the response to a step-function input (a switching process) and the response to a square-wave input. The role of the length $L$ of the control segment is carefully studied. It is revealed that when $L$ is increased, the performance of the thermal transistor worsens badly. Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on $L$ quite well, which agrees with our analytical expectation. However, the detailed power exponents deviate from the expected values noticeably. This implies the violation of the conventional assumptions that we adopt.

Key words: phonon, phononics, thermal transistor, dynamic response, heat conduction

中图分类号:  (Phonons or vibrational states in low-dimensional structures and nanoscale materials)

  • 63.22.-m
63.20.-e (Phonons in crystal lattices) 44.10.+i (Heat conduction) 05.70.Ln (Nonequilibrium and irreversible thermodynamics)