中国物理B ›› 2023, Vol. 32 ›› Issue (6): 60302-060302.doi: 10.1088/1674-1056/acc0fa
Yang-Qing Guo(郭羊青)1, Ping-Xing Chen(陈平形)1, and Jian Li(李剑)2,3,4,†
Yang-Qing Guo(郭羊青)1, Ping-Xing Chen(陈平形)1, and Jian Li(李剑)2,3,4,†
摘要: Quantum entanglement, a key resource in quantum information processing, is reduced by interaction between the quantum system concerned and its unavoidable noisy environment. Therefore it is of particular importance to study the dynamical properties of entanglement in open quantum systems. In this work, we mainly focus on two qubits coupled to an adjustable environment, namely a semi-infinite transmission line. The two qubits' relaxations, through individual channels or collective channel or both, can be adjusted by the qubits' transition frequencies. We examine entanglement dynamics in this model system with initial Werner state, and show that the phenomena of entanglement sudden death and revival can be observed. Due to the hardness of preparing the Werner state experimentally, we introduce a new type of entangled state called pseudo-Werner state, which preserves as much entangling property as the Werner state, and more importantly, it is experiment friendly. Furthermore, we provide detailed procedures for generating pseudo-Werner state and studying entanglement dynamics with it, which can be straightforwardly implemented in a superconducting waveguide quantum electrodynamics system.
中图分类号: (Entanglement production and manipulation)